From c19f84c159f951dd764d25b7411fc984df76dc8c Mon Sep 17 00:00:00 2001 From: "Joern Ungermann (IEK-7 FZ-Juelich)" <j.ungermann@fz-juelich.de> Date: Thu, 30 Oct 2014 12:23:22 +0100 Subject: [PATCH] Added a steppest descent minimizer for lp problems and added an experimental split-bregman optimizer. --- pyramid/reconstruction.py | 119 +++++++++++++++++++++++++------------- 1 file changed, 78 insertions(+), 41 deletions(-) diff --git a/pyramid/reconstruction.py b/pyramid/reconstruction.py index 237ef8e..b5a1500 100644 --- a/pyramid/reconstruction.py +++ b/pyramid/reconstruction.py @@ -83,7 +83,7 @@ class PrintIterator(object): return self.iteration -def optimize_linear(data, regularisator=None, maxiter=1000, verbosity=0): +def optimize_linear(data, regularisator=None, max_iter=None): '''Reconstruct a three-dimensional magnetic distribution from given phase maps via the conjugate gradient optimizaion method :func:`~.scipy.sparse.linalg.cg`. @@ -93,19 +93,9 @@ def optimize_linear(data, regularisator=None, maxiter=1000, verbosity=0): :class:`~.DataSet` object containing all phase maps in :class:`~.PhaseMap` objects and all projection directions in :class:`~.Projector` objects. These provide the essential information for the reconstruction. - Se_inv : :class:`~numpy.ndarray` (N=2), optional - Inverted covariance matrix of the measurement errors. The matrix has size `NxN` with N - being the length of the targetvector y (vectorized phase map information). Defaults to - an appropriate unity matrix if none is provided. regularisator : :class:`~.Regularisator`, optional Regularisator class that's responsible for the regularisation term. Defaults to zero order Tikhonov if none is provided. - maxiter : int - Maximum number of iterations. - verbosity : {0, 1, 2}, optional - Parameter defining the verposity of the output. `2` will show the current number of the - iteration and the cost of the current distribution. `1` will just show the iteration - number and `0` is the default and will prevent output all together. Returns ------- @@ -113,13 +103,13 @@ def optimize_linear(data, regularisator=None, maxiter=1000, verbosity=0): The reconstructed magnetic distribution as a :class:`~.MagData` object. ''' - import jutil + import jutil.cg as jcg LOG.debug('Calling optimize_sparse_cg') # Set up necessary objects: cost = Costfunction(data, regularisator) - print cost(np.zeros(cost.n)) - x_opt = jutil.cg.conj_grad_minimize(cost, max_iter=20) - print cost(x_opt) + LOG.info('Cost before optimization: {}'.format(cost(np.zeros(cost.n)))) + x_opt = jcg.conj_grad_minimize(cost, max_iter=max_iter) + LOG.info('Cost after optimization: {}'.format(cost(x_opt))) # Create and return fitting MagData object: mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) mag_opt.set_vector(x_opt, data.mask) @@ -136,10 +126,11 @@ def optimize_nonlin(data, first_guess=None, regularisator=None): :class:`~.DataSet` object containing all phase maps in :class:`~.PhaseMap` objects and all projection directions in :class:`~.Projector` objects. These provide the essential information for the reconstruction. - verbosity : {2, 1, 0}, optional - Parameter defining the verposity of the output. `2` is the default and will show the - current number of the iteration and the cost of the current distribution. `2` will just - show the iteration number and `0` will prevent output all together. + first_fuess : :class:`~pyramid.magdata.MagData` + magnetization to start the non-linear iteration with. + regularisator : :class:`~.Regularisator`, optional + Regularisator class that's responsible for the regularisation term. Defaults to zero + order Tikhonov if none is provided. Returns ------- @@ -147,44 +138,90 @@ def optimize_nonlin(data, first_guess=None, regularisator=None): The reconstructed magnetic distribution as a :class:`~.MagData` object. ''' - import jutil + import jutil.minimizer as jmin + import jutil.norms as jnorms LOG.debug('Calling optimize_cg') if first_guess is None: first_guess = MagData(data.a, np.zeros((3,)+data.dim)) + x_0 = first_guess.get_vector(data.mask) cost = Costfunction(data, regularisator) + assert len(x_0) == cost.n, (len(x_0), cost.m, cost.n) -# proj = fwd_model.data_set.projectors[0] -# proj_jac1 = np.array([proj.jac_dot(np.eye(proj.m, 1, -i).squeeze()) for i in range(proj.m)]) -# proj_jac2 = np.array([proj.jac_T_dot(np.eye(proj.n, 1, -i).squeeze()) for i in range(proj.n)]) -# print jac1, jac2.T, abs(jac1-jac2.T).sum() -# print jac1.shape, jac2.shape + p = regularisator.p + q = 1. / (1. - (1. / p)) + lp = regularisator.norm + lq = jnorms.LPPow(q, 1e-20) + def preconditioner(_, direc): + direc_p = direc / direc.max() + direc_p = 10 * (1. / q) * lq.jac(direc_p) + return direc_p + + # This Method is semi-best for L1 type problems. Takes forever, though + LOG.info('Cost before optimization: {}'.format(cost(np.zeros(cost.n)))) + result = jmin.minimize( + cost, x_0, + method="SteepestDescent", + options={"preconditioner": preconditioner}, + tol={"max_iteration": 10000}) + x_opt = result.x + LOG.info('Cost after optimization: {}'.format(cost(x_opt))) + mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) + mag_opt.set_vector(x_opt, data.mask) + return mag_opt -# pm = fwd_model.phase_mappers[proj.dim_uv] -# pm_jac1 = np.array([pm.jac_dot(np.eye(pm.m)[:, i]) for i in range(pm.m)]) -# pm_jac2 = np.array([pm.jac_T_dot(np.eye(pm.n)[:, i]) for i in range(pm.n)]) -# print jac1, jac2.T, abs(jac1-jac2.T).sum() -# print jac1.shape, jac2.shape +def optimize_splitbregman(data, weight, lam, mu): + '''Reconstruct a three-dimensional magnetic distribution from given phase maps via the + conjugate gradient optimizaion method :func:`~.scipy.sparse.linalg.cg`. - # jac1 = np.array([fwd_model.jac_dot(x_0, np.eye(fwd_model.m)[:, i]) for i in range(fwd_model.m)]) - # jac2 = np.array([fwd_model.jac_T_dot(x_0, np.eye(fwd_model.n)[:, i]) for i in range(fwd_model.n)]) - # print proj_jac1.dot(pm_jac1) - # print (pm_jac2.dot(proj_jac2)).T - # print jac1 -# print jac2.T -# print abs(jac1-jac2.T).sum() -# print jac1.shape, jac2.shape + Parameters + ---------- + data : :class:`~.DataSet` + :class:`~.DataSet` object containing all phase maps in :class:`~.PhaseMap` objects and all + projection directions in :class:`~.Projector` objects. These provide the essential + information for the reconstruction. + first_fuess : :class:`~pyramid.magdata.MagData` + magnetization to start the non-linear iteration with. + regularisator : :class:`~.Regularisator`, optional + Regularisator class that's responsible for the regularisation term. Defaults to zero + order Tikhonov if none is provided. - assert len(x_0) == cost.n, (len(x_0), cost.m, cost.n) - result = jutil.minimizer.minimize(cost, x_0, options={"conv_rel":1e-2}, tol={"max_iteration":4}) - x_opt = result.x + Returns + ------- + mag_data : :class:`~pyramid.magdata.MagData` + The reconstructed magnetic distribution as a :class:`~.MagData` object. + + ''' + import jutil.splitbregman as jsb + import jutil.operator as joperator + import jutil.diff as jdiff + from pyramid.regularisator import FirstOrderRegularisator + LOG.debug('Calling optimize_splitbregman') + regularisator = FirstOrderRegularisator(data.mask, lam, 1) + x_0 = MagData(data.a, np.zeros((3,)+data.dim)).get_vector(data.mask) + cost = Costfunction(data, regularisator) + print cost(x_0) + + fwd_mod = cost.fwd_model + A = joperator.Function( + (cost.m, cost.n), + lambda x: fwd_mod.jac_dot(None, x), + FT=lambda x: fwd_mod.jac_T_dot(None, x)) + D0 = jdiff.get_diff_operator(data.mask, 0, 3) + D1 = jdiff.get_diff_operator(data.mask, 1, 3) + D = joperator.VStack([D0, D1]) + y = np.asarray(cost.y, dtype=np.double) + x_opt = jsb.split_bregman_2d( + A, D, y, + weight=1000, mu=10, lambd=1e-6, max_iter=100) print cost(x_opt) mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) mag_opt.set_vector(x_opt, data.mask) return mag_opt + def optimize_simple_leastsq(phase_map, mask, b_0=1, lam=1E-4, order=0): '''Reconstruct a magnetic distribution for a 2-D problem with known pixel locations. -- GitLab