diff --git a/pyramid/__init__.py b/pyramid/__init__.py index dace4b4ba8b85aa2dbe8f298f6f21094eb535545..ad35b5abdd5e561bafdf413b996d5c1a96bbe0f1 100644 --- a/pyramid/__init__.py +++ b/pyramid/__init__.py @@ -42,6 +42,7 @@ import logging from . import analytic from . import magcreator from . import reconstruction +from . import fft from .costfunction import * from .dataset import * from .forwardmodel import * @@ -51,7 +52,6 @@ from .phasemap import * from .phasemapper import * from .projector import * from .regularisator import * -from .util import * from .version import version as __version__ from .version import hg_revision as __hg_revision__ @@ -59,7 +59,7 @@ _log = logging.getLogger(__name__) _log.info("Starting PYRAMID V{} HG{}".format(__version__, __hg_revision__)) del logging -__all__ = ['__version__', '__hg_revision__', 'analytic', 'magcreator', 'reconstruction'] +__all__ = ['__version__', '__hg_revision__', 'analytic', 'magcreator', 'reconstruction', 'fft'] __all__.extend(costfunction.__all__) __all__.extend(dataset.__all__) __all__.extend(forwardmodel.__all__) @@ -69,4 +69,3 @@ __all__.extend(phasemap.__all__) __all__.extend(phasemapper.__all__) __all__.extend(projector.__all__) __all__.extend(regularisator.__all__) -__all__.extend(util.__all__) diff --git a/pyramid/costfunction.py b/pyramid/costfunction.py index 9f367797747b8a4d7ce2a9b09de142a15fb20b84..b177e05f98831bdf9c0f669067d62c0f74558d56 100644 --- a/pyramid/costfunction.py +++ b/pyramid/costfunction.py @@ -104,7 +104,6 @@ class Costfunction(object): Jacobi vector which represents the cost derivative of all voxels of the magnetization. ''' - self._log.debug('Calling jac') assert len(x) == self.n return (2 * self.fwd_model.jac_T_dot(x, self.Se_inv.dot(self.fwd_model(x) - self.y)) + self.regularisator.jac(x)) @@ -128,11 +127,11 @@ class Costfunction(object): Product of the input `vector` with the Hessian matrix of the costfunction. ''' -# self._log.debug('Calling hess_dot') # TODO: Profiler says this was slow... return (2 * self.fwd_model.jac_T_dot(x, self.Se_inv.dot(self.fwd_model.jac_dot(x, vector))) + self.regularisator.hess_dot(x, vector)) def hess_diag(self, _): + # TODO: Docstring! return np.ones(self.n) diff --git a/pyramid/dataset.py b/pyramid/dataset.py index 1e3ad434f60bfbb12c0de6adbedf0679f8aeaee5..9f422ca59f1e6cda07006b5dca9bd881fd82bacc 100644 --- a/pyramid/dataset.py +++ b/pyramid/dataset.py @@ -76,8 +76,7 @@ class DataSet(object): @property def phase_mappers(self): dim_uv_set = set([p.dim_uv for p in self.projectors]) - kernel_list = [Kernel(self.a, dim_uv, use_fftw=self.use_fftw, threads=self.threads) - for dim_uv in dim_uv_set] + kernel_list = [Kernel(self.a, dim_uv, threads=self.threads) for dim_uv in dim_uv_set] return {kernel.dim_uv: PhaseMapperRDFC(kernel) for kernel in kernel_list} def __init__(self, a, dim, b_0=1, mask=None, Se_inv=None, use_fftw=True, threads=1): @@ -244,3 +243,6 @@ class DataSet(object): cmap, limit, norm, gain, interpolation, grad_encode) for (i, phase_map) in enumerate(phase_maps)] plt.show() + + +# TODO: method for constructing 3D mask from 2D masks? diff --git a/pyramid/fft.py b/pyramid/fft.py new file mode 100644 index 0000000000000000000000000000000000000000..e595437f7d88ecfbca5b397be88e1083b3e12d07 --- /dev/null +++ b/pyramid/fft.py @@ -0,0 +1,229 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Nov 28 15:30:10 2014 + +@author: Jan +""" + +# TODO: Document! + +import numpy as np +import cPickle as pickle +import os + +# pyFFTW depends on this +try: + from collections import Counter #analysis:ignore +except ImportError: + import collections_python27 + import collections + collections.Counter = collections_python27.Counter + +try: + import pyfftw + BACKEND = 'fftw' +except ImportError: + pyfftw = None + BACKEND = 'numpy' + print("pyFFTW module not found. Using numpy implementation.") + + +__all__ = ['PLANS', 'FLOAT', 'COMPLEX', 'NTHREADS', 'dump_wisdom', 'load_wisdom', 'zeros', 'empty', + 'configure_backend', 'fftn', 'ifftn', 'rfftn', 'irfftn', 'rfftn_adj', 'irfftn_adj'] + + +class FFTWCache(object): + + def __init__(self): + self.cache = dict() + + def add_fftw(self, fft_type, fftw_obj, s, axes, nthreads): + in_arr = fftw_obj.get_input_array() + key = (fft_type, in_arr.shape, in_arr.dtype, nthreads) + self.cache[key] = fftw_obj + + def lookup_fftw(self, fft_type, in_arr, s, axes, nthreads): + key = (fft_type, in_arr.shape, in_arr.dtype, nthreads) + return self.cache.get(key, None) + + def clear_cache(self): + self.cache = dict() + + +PLANS = FFTWCache() +FLOAT = np.float32 # One convenient place to +COMPLEX = np.complex64 # change from 32 to 64 bit +NTHREADS = 1 + + +# Numpy functions: +def _fftn_numpy(a, s=None, axes=None): + return np.fft.fftn(a, s, axes) + + +def _ifftn_numpy(a, s=None, axes=None): + return np.fft.ifftn(a, s, axes) + + +def _rfftn_numpy(a, s=None, axes=None): + return np.fft.rfftn(a, s, axes) + + +def _irfftn_numpy(a, s=None, axes=None): + return np.fft.irfftn(a, s, axes) + + +def _rfftn_adj_numpy(a): + n = 2 * (a.shape[-1] - 1) + out_shape = a.shape[:-1] + (n,) + out_arr = zeros(out_shape, dtype=a.dtype) + out_arr[:, :n] = a + return _ifftn_numpy(out_arr).real * np.prod(out_shape) + + +def _irfftn_adj_numpy(a): + n = a.shape[-1] // 2 + 1 + out_arr = _fftn_numpy(a, axis=-1) / a.shape[-1] + if a.shape[-1] % 2 == 0: # even + out_arr[:, 1:n - 1] += np.conj(out_arr[:, :n-1:-1]) + else: # odd + out_arr[:, 1:n] += np.conj(out_arr[:, :n-1:-1]) + axes = tuple(range(len(out_arr.shape[:-1]))) + return _fftn_numpy(out_arr[:, :n], axes=axes) / np.prod(out_arr.shape[:-1]) + + +# FFTW functions: +def _fftn_fftw(a, s=None, axes=None): + if a.dtype not in (FLOAT, COMPLEX): + raise TypeError('Wrong input type!') + fftw = PLANS.lookup_fftw('fftn', a, s, axes, NTHREADS) + if fftw is None: + fftw = pyfftw.builders.fftn(a, s, axes) + PLANS.add_fftw('fftn', fftw, s, axes, NTHREADS) + return fftw(a).copy() + + +def _ifftn_fftw(a, s=None, axes=None): + if a.dtype not in (FLOAT, COMPLEX): + raise TypeError('Wrong input type!') + fftw = PLANS.lookup_fftw('ifftn', a, s, axes, NTHREADS) + if fftw is None: + fftw = pyfftw.builders.ifftn(a, s, axes) + PLANS.add_fftw('ifftn', fftw, s, axes, NTHREADS) + return fftw(a).copy() + + +def _rfftn_fftw(a, s=None, axes=None): + if a.dtype != FLOAT: + raise TypeError('Wrong input type!') + fftw = PLANS.lookup_fftw('rfftn', a, s, axes, NTHREADS) + if fftw is None: + fftw = pyfftw.builders.rfftn(a, s, axes) + PLANS.add_fftw('rfftn', fftw, s, axes, NTHREADS) + return fftw(a).copy() + + +def _irfftn_fftw(a, s=None, axes=None): + if a.dtype != COMPLEX: + raise TypeError('Wrong input type!') + fftw = PLANS.lookup_fftw('irfftn', a, s, axes, NTHREADS) + if fftw is None: + fftw = pyfftw.builders.irfftn(a, s, axes) + PLANS.add_fftw('irfftn', fftw, s, axes, NTHREADS) + return fftw(a).copy() + + +def _rfftn_adj_fftw(a): + n = 2 * (a.shape[-1] - 1) + out_shape = a.shape[:-1] + (n,) + out_arr = zeros(out_shape, dtype=a.dtype) + out_arr[:, :a.shape[-1]] = a + return _ifftn_fftw(out_arr).real * np.prod(out_shape) + + +def _irfftn_adj_fftw(a): + out_arr = _fftn_fftw(a, axes=(-1,)) / a.shape[-1] # FFT of last axis + n = a.shape[-1] // 2 + 1 + if a.shape[-1] % 2 == 0: # even + out_arr[:, 1:n-1] += np.conj(out_arr[:, :n-1:-1]) + else: # odd + out_arr[:, 1:n] += np.conj(out_arr[:, :n-1:-1]) + axes = tuple(range(len(out_arr.shape[:-1]))) + return _fftn_fftw(out_arr[:, :n], axes=axes) / np.prod(out_arr.shape[:-1]) + + +# These wisdom functions do nothing if pyFFTW is not available +def dump_wisdom(fname): + # TODO: Docstring! + if pyfftw is not None: + with open(fname, 'wb') as fp: + pickle.dump(pyfftw.export_wisdom(), fp, pickle.HIGHEST_PROTOCOL) + + +def load_wisdom(fname): + # TODO: Docstring! + if pyfftw is not None: + if not os.path.exists(fname): + print("Warning: Wisdom file does not exist. First time use?") + else: + with open(fname, 'rb') as fp: + pyfftw.import_wisdom(pickle.load(fp)) + + +# Array setups: +def zeros(shape, dtype): + # TODO: Docstring! + result = np.zeros(shape, dtype) + if pyfftw is not None: + result = pyfftw.n_byte_align(result, pyfftw.simd_alignment) + return result + + +def empty(shape, dtype): + # TODO: Docstring! + result = np.empty(shape, dtype) + if pyfftw is not None: + result = pyfftw.n_byte_align(result, pyfftw.simd_alignment) + return result + + +# Configure backend: +def configure_backend(backend): + """ + Change FFT backend. + + Supported values are "numpy" and "fftw". + """ + global fftn + global ifftn + global rfftn + global irfftn + global rfftn_adj + global irfftn_adj + global BACKEND + if backend == "numpy": + fftn = _fftn_numpy + ifftn = _ifftn_numpy + rfftn = _rfftn_numpy + irfftn = _irfftn_numpy + rfftn_adj = _rfftn_adj_numpy + irfftn_adj = _irfftn_adj_numpy + BACKEND = 'numpy' + elif backend == "fftw": + if pyfftw is not None: + fftn = _fftn_fftw + ifftn = _ifftn_fftw + rfftn = _rfftn_fftw + irfftn = _irfftn_fftw + rfftn_adj = _rfftn_adj_fftw + irfftn_adj = _irfftn_adj_fftw + BACKEND = 'pyfftw' + else: + print("Error: FFTW requested but not available") + + +# On import: +if pyfftw is not None: + configure_backend("fftw") +else: + configure_backend("numpy") diff --git a/pyramid/forwardmodel.py b/pyramid/forwardmodel.py index 6a61a17ac1302627f84ed9d1afa79a0a89f2bd1a..eacc07993ccfc532507eb2260b104ca2b7b88283 100644 --- a/pyramid/forwardmodel.py +++ b/pyramid/forwardmodel.py @@ -93,7 +93,6 @@ class ForwardModel(object): `vector`. ''' -# self._log.debug('Calling jac_dot') # TODO: Profiler says this was slow... self.mag_data.magnitude[:] = 0 self.mag_data.set_vector(vector, self.data_set.mask) result = np.zeros(self.m) @@ -123,7 +122,6 @@ class ForwardModel(object): the input `vector`. ''' -# self._log.debug('Calling jac_T_dot') # TODO: Profiler says this was slow... result = np.zeros(3*np.prod(self.data_set.dim)) hp = self.hook_points for i, projector in enumerate(self.data_set.projectors): diff --git a/pyramid/kernel.py b/pyramid/kernel.py index c2b1664b86fb7eeb7cd823d9e7bc26f7b9491af8..8c322c5f788bd636916c62423f2b8fbd8bcabd56 100644 --- a/pyramid/kernel.py +++ b/pyramid/kernel.py @@ -5,6 +5,8 @@ single magnetized pixel.""" import numpy as np +from pyramid import fft + import logging @@ -57,66 +59,39 @@ class Kernel(object): _log = logging.getLogger(__name__+'.Kernel') - def __init__(self, a, dim_uv, b_0=1., geometry='disc', use_fftw=True, threads=1): + def __init__(self, a, dim_uv, b_0=1., geometry='disc', threads=1): self._log.debug('Calling __init__') # Set basic properties: self.dim_uv = dim_uv # Dimensions of the FOV self.dim_kern = tuple(2*np.array(dim_uv)-1) # Dimensions of the kernel -# self.size = np.prod(dim_uv) # TODO: is this even used? (Pixel count) self.a = a self.geometry = geometry # Set up FFT: - if not use_fftw: + if fft.BACKEND == 'pyfftw': + self.dim_pad = tuple(2*np.array(dim_uv)) # is at least even (not nec. power of 2) + elif fft.BACKEND == 'numpy': self.dim_pad = tuple(2**np.ceil(np.log2(2*np.array(dim_uv))).astype(int)) # pow(2) - self.use_fftw = False - else: - try: - import pyfftw - self.dim_pad = tuple(2*np.array(dim_uv)) # is at least even (not nec. power of 2) - self.use_fftw = True - except ImportError: - self.dim_pad = tuple(2**np.ceil(np.log2(2*np.array(dim_uv))).astype(int)) # pow(2) - self.use_fftw = False - self._log.info('pyFFTW could not be imported, using numpy instead!') - self.dim_fft = (self.dim_pad[0], self.dim_pad[1]/2+1) # last axis is real + self.dim_fft = (self.dim_pad[0], self.dim_pad[1]//2+1) # last axis is real self.slice_phase = (slice(dim_uv[0]-1, self.dim_kern[0]), # Shift because kernel center slice(dim_uv[1]-1, self.dim_kern[1])) # is not at (0, 0)! self.slice_mag = (slice(0, dim_uv[0]), # Magnetization is padded on the far end! slice(0, dim_uv[1])) # (Phase cutout is shifted as listed above) - self.u = np.zeros(self.dim_kern, dtype=np.float32) - self.v = np.zeros(self.dim_kern, dtype=np.float32) - self.u_fft = np.zeros(self.dim_fft, dtype=np.complex64) - self.v_fft = np.zeros(self.dim_fft, dtype=np.complex64) - if self.use_fftw: # use pyfftw (FFTW wrapper for python) - self.u = pyfftw.n_byte_align(self.u, pyfftw.simd_alignment) - self.v = pyfftw.n_byte_align(self.v, pyfftw.simd_alignment) - self.u_fft = pyfftw.n_byte_align(self.u_fft, pyfftw.simd_alignment) - self.v_fft = pyfftw.n_byte_align(self.v_fft, pyfftw.simd_alignment) - rfftn = pyfftw.builders.rfftn(self.u, self.dim_pad, threads=threads) - self.threads = threads - else: # otherwise use numpy - rfftn = lambda x: np.fft.rfftn(x, self.dim_pad) + self.threads = threads # TODO: make obsolete! # Calculate kernel (single pixel phase): coeff = b_0 * a**2 / (2*PHI_0) # Minus is gone because of negative z-direction v_dim, u_dim = dim_uv u = np.linspace(-(u_dim-1), u_dim-1, num=2*u_dim-1) v = np.linspace(-(v_dim-1), v_dim-1, num=2*v_dim-1) uu, vv = np.meshgrid(u, v) + self.u = fft.empty(self.dim_kern, fft.FLOAT) + self.v = fft.empty(self.dim_kern, fft.FLOAT) self.u[...] = coeff * self._get_elementary_phase(geometry, uu, vv, a) self.v[...] = coeff * self._get_elementary_phase(geometry, vv, uu, a) # Calculate Fourier trafo of kernel components: - self.u_fft[...] = rfftn(self.u) - self.v_fft[...] = rfftn(self.v) + self.u_fft = fft.rfftn(self.u, self.dim_pad) + self.v_fft = fft.rfftn(self.v, self.dim_pad) self._log.debug('Created '+str(self)) - # TODO: make pyfftw optional (SLOW if kernel has to be build every time like in pm()!) - # TODO: test if prior build of kernel brings speed up in test_method() or test_fftw() - # TODO: implement fftw also in phasemapper (JUST there, here: FFT TWICE and big overhead) - # TODO: BUT allocation of u/v/u_fft/v_fft could be beneficial (try useing with numpy.fft) - # TODO: Set plan manually? Save computation time also for kernel? - # TODO: Multithreading? - # TODO: TakeTime multiple runs? - def __repr__(self): self._log.debug('Calling __repr__') return '%s(a=%r, dim_uv=%r, geometry=%r)' % \ @@ -128,7 +103,7 @@ class Kernel(object): (self.a, self.dim_uv, self.geometry) def _get_elementary_phase(self, geometry, n, m, a): - # TODO: Docstring! Function for the phase of an elementary geometry: + self._log.debug('Calling _get_elementary_phase') if geometry == 'disc': in_or_out = np.logical_not(np.logical_and(n == 0, m == 0)) return m / (n**2 + m**2 + 1E-30) * in_or_out @@ -141,6 +116,8 @@ class Kernel(object): - F_a(n-0.5, m+0.5) + F_a(n+0.5, m+0.5)) def print_info(self): + # TODO: Docstring! + self._log.debug('Calling print_info') print 'Shape of the FOV :', self.dim_uv print 'Shape of the Kernel:', self.dim_kern print 'Zero-padded shape :', self.dim_pad diff --git a/pyramid/magcreator.py b/pyramid/magcreator.py index c4286d3dc4ce9c3f6a0ffbacf711818ea4cf33d2..c3abb46ee1e495976d1ceb1eb55bbee57b75d4e2 100644 --- a/pyramid/magcreator.py +++ b/pyramid/magcreator.py @@ -388,3 +388,6 @@ def create_mag_dist_vortex(mag_shape, center=None, axis='z', magnitude=1): y_mag = -np.ones(dim) * np.cos(phi) * mag_shape * magnitude x_mag = np.zeros(dim) return np.array([x_mag, y_mag, z_mag]) + +# TODO: Smooth Vortex! +# m(x,y) = (-y/r cos(phi(r/R)), x/r sin(phi(r/R)), cos(phi(r))); phi in range[0, 1] \ No newline at end of file diff --git a/pyramid/magdata.py b/pyramid/magdata.py index f24686d145516b7662345750221ccc60173bcaa3..9b64f6d8bd02ed79da57520ce30abfdd8868939b 100644 --- a/pyramid/magdata.py +++ b/pyramid/magdata.py @@ -84,7 +84,8 @@ class MagData(object): def mag_vec(self, mag_vec): assert isinstance(mag_vec, np.ndarray), 'Vector has to be a numpy array!' assert np.size(mag_vec) == 3*np.prod(self.dim), \ - 'Vector has to match magnitude dimensions! {} {}'.format(mag_vec.shape, 3*np.prod(self.dim)) + 'Vector has to match magnitude dimensions! {} {}'.format(mag_vec.shape, + 3*np.prod(self.dim)) self.magnitude = mag_vec.reshape((3,)+self.dim) def __init__(self, a, magnitude): @@ -494,11 +495,15 @@ class MagData(object): if scaled: plot_u /= np.hypot(plot_u, plot_v).max() plot_v /= np.hypot(plot_u, plot_v).max() + # Setup quiver: + dim_uv = plot_u.shape ad = ar_dens - axis.quiver(plot_u[::ad, ::ad], plot_v[::ad, ::ad], pivot='middle', units='xy', - angles=angles, scale_units='xy', scale=1, headwidth=6, headlength=7) - axis.set_xlim(-1, np.shape(plot_u)[1]) - axis.set_ylim(-1, np.shape(plot_u)[0]) + xx, yy = np.meshgrid(np.arange(dim_uv[0]), np.arange(dim_uv[1])) + axis.quiver(xx[::ad, ::ad], yy[::ad, ::ad], plot_u[::ad, ::ad], plot_v[::ad, ::ad], + pivot='middle', units='xy', angles=angles[::ad, ::ad], + scale_units='xy', scale=1./ad, headwidth=6, headlength=7) + axis.set_xlim(-1, dim_uv[1]) + axis.set_ylim(-1, dim_uv[0]) axis.set_title(title, fontsize=18) axis.set_xlabel(u_label, fontsize=15) axis.set_ylabel(v_label, fontsize=15) @@ -507,7 +512,35 @@ class MagData(object): axis.yaxis.set_major_locator(MaxNLocator(nbins=9, integer=True)) return axis - def quiver_plot3d(self, title='Magnetization Distribution'): + # TODO: Switch with mayavi or combine + def quiver_plot3d_matplotlib(self, title='Magnetization Distribution', ar_dens=1): # TODO: Doc ar_dens + from mpl_toolkits.mplot3d import axes3d #analysis:ignore + # TODO: more arguments like in the other plots and document!!! + a = self.a + dim = self.dim + ad = ar_dens + # Create points and vector components as lists: + zz, yy, xx = np.mgrid[a/2:(dim[0]*a-a/2):dim[0]*1j, + a/2:(dim[1]*a-a/2):dim[1]*1j, + a/2:(dim[2]*a-a/2):dim[2]*1j] + xx = xx[::ad, ::ad, ::ad] + yy = yy[::ad, ::ad, ::ad] + zz = zz[::ad, ::ad, ::ad] + x_mag = self.magnitude[0, ::ad, ::ad, ::ad] + y_mag = self.magnitude[1, ::ad, ::ad, ::ad] + z_mag = self.magnitude[2, ::ad, ::ad, ::ad] + # Plot them as vectors: + fig = plt.figure(figsize=(8.5, 7)) + axis = fig.add_subplot(1, 1, 1) + axis = fig.gca(projection='3d') + axis.quiver(xx, yy, zz, x_mag, y_mag, z_mag) + axis.set_title(title, fontsize=18) + # TODO: add colorbar! +# mlab.colorbar(None, label_fmt='%.2f') +# mlab.colorbar(None, orientation='vertical') + return axis + + def quiver_plot3d(self, title='Magnetization Distribution', ar_dens=1): # TODO: Doc ar_dens '''Plot the magnetization as 3D-vectors in a quiverplot. Parameters @@ -521,19 +554,19 @@ class MagData(object): ''' self._log.debug('Calling quiver_plot3D') from mayavi import mlab - a = self.a dim = self.dim + ad = ar_dens # Create points and vector components as lists: zz, yy, xx = np.mgrid[a/2:(dim[0]*a-a/2):dim[0]*1j, a/2:(dim[1]*a-a/2):dim[1]*1j, a/2:(dim[2]*a-a/2):dim[2]*1j] - xx = xx.reshape(-1) - yy = yy.reshape(-1) - zz = zz.reshape(-1) - x_mag = np.reshape(self.magnitude[0], (-1)) - y_mag = np.reshape(self.magnitude[1], (-1)) - z_mag = np.reshape(self.magnitude[2], (-1)) + xx = xx[::ad, ::ad, ::ad].flatten()#reshape(-1) + yy = yy[::ad, ::ad, ::ad].flatten()#.reshape(-1) + zz = zz[::ad, ::ad, ::ad].flatten()#.reshape(-1) + x_mag = self.magnitude[0][::ad, ::ad, ::ad].flatten()#, (-1)) + y_mag = self.magnitude[1][::ad, ::ad, ::ad].flatten()#, (-1)) + z_mag = self.magnitude[2][::ad, ::ad, ::ad].flatten()#, (-1)) # Plot them as vectors: mlab.figure() plot = mlab.quiver3d(xx, yy, zz, x_mag, y_mag, z_mag, mode='arrow') diff --git a/pyramid/phasemapper.py b/pyramid/phasemapper.py index 32387ddf679873e6ec5ced62df41d3864cbc3f1f..76feddabac165232ad715912e0076249384515fa 100644 --- a/pyramid/phasemapper.py +++ b/pyramid/phasemapper.py @@ -17,15 +17,15 @@ from pyramid.magdata import MagData from pyramid.phasemap import PhaseMap from pyramid.projector import SimpleProjector from pyramid.kernel import Kernel - -import jutil.fft as jfft +from pyramid import fft import logging __all__ = ['PhaseMapperRDFC', 'PhaseMapperRDRC', 'PhaseMapperFDFC', 'pm'] +_log = logging.getLogger(__name__) -PHI_0 = 2067.83 # magnetic flux in T*nm² +PHI_0 = 2067.83 # magnetic flux in T*nm² H_BAR = 6.626E-34 # Planck constant in J*s M_E = 9.109E-31 # electron mass in kg Q_E = 1.602E-19 # electron charge in C @@ -50,17 +50,14 @@ class PhaseMapper(object): @abc.abstractmethod def __call__(self, mag_data): - self._log.debug('Calling __call__') raise NotImplementedError() @abc.abstractmethod def jac_dot(self, vector): - self._log.debug('Calling jac_dot') raise NotImplementedError() @abc.abstractmethod def jac_T_dot(self, vector): - self._log.debug('Calling jac_T_dot') raise NotImplementedError() @@ -100,29 +97,9 @@ class PhaseMapperRDFC(PhaseMapper): self.kernel = kernel self.m = np.prod(kernel.dim_uv) self.n = 2 * self.m - self.u_mag = np.zeros(kernel.dim_pad, dtype=np.float32) - self.v_mag = np.zeros(kernel.dim_pad, dtype=np.float32) - self.mag_adj = np.zeros(kernel.dim_pad, dtype=np.float32) - self.u_mag_fft = np.zeros(kernel.dim_fft, dtype=np.complex64) - self.v_mag_fft = np.zeros(kernel.dim_fft, dtype=np.complex64) - self.phase_fft = np.zeros(kernel.dim_fft, dtype=np.complex64) - if self.kernel.use_fftw: # if possible use FFTW - import pyfftw - self.u_mag = pyfftw.n_byte_align(self.u_mag, pyfftw.simd_alignment) - self.v_mag = pyfftw.n_byte_align(self.v_mag, pyfftw.simd_alignment) - self.mag_adj = pyfftw.n_byte_align(self.mag_adj, pyfftw.simd_alignment) - self.u_mag_fft = pyfftw.n_byte_align(self.u_mag_fft, pyfftw.simd_alignment) - self.v_mag_fft = pyfftw.n_byte_align(self.v_mag_fft, pyfftw.simd_alignment) - self.phase_fft = pyfftw.n_byte_align(self.phase_fft, pyfftw.simd_alignment) - self._rfft2 = pyfftw.builders.rfftn(self.u_mag, threads=kernel.threads) - self._irfft2 = pyfftw.builders.irfftn(self.phase_fft, threads=kernel.threads) - self._rfft2_adj = self._rfft2_adj_fftw - self._irfft2_adj = self._irfft2_adj_fftw - else: # otherwise use numpy - self._rfft2 = np.fft.rfftn - self._irfft2 = np.fft.irfftn - self._rfft2_adj = lambda x: jfft.rfft2_adj(x, self.kernel.dim_pad[1]) - self._irfft2_adj = jfft.irfft2_adj + self.u_mag = fft.zeros(kernel.dim_pad, dtype=fft.FLOAT) + self.v_mag = fft.zeros(kernel.dim_pad, dtype=fft.FLOAT) + self.mag_adj = fft.zeros(kernel.dim_pad, dtype=fft.FLOAT) self._log.debug('Created '+str(self)) def __repr__(self): @@ -146,12 +123,12 @@ class PhaseMapperRDFC(PhaseMapper): def _convolve(self): # Fourier transform the projected magnetisation: - self.u_mag_fft[...] = self._rfft2(self.u_mag) - self.v_mag_fft[...] = self._rfft2(self.v_mag) + self.u_mag_fft = fft.rfftn(self.u_mag) + self.v_mag_fft = fft.rfftn(self.v_mag) # Convolve the magnetization with the kernel in Fourier space: - self.phase_fft[...] = self.u_mag_fft*self.kernel.u_fft - self.v_mag_fft*self.kernel.v_fft + self.phase_fft = self.u_mag_fft*self.kernel.u_fft - self.v_mag_fft*self.kernel.v_fft # Return the result: - return self._irfft2(self.phase_fft)[self.kernel.slice_phase] + return fft.irfftn(self.phase_fft)[self.kernel.slice_phase] def jac_dot(self, vector): '''Calculate the product of the Jacobi matrix with a given `vector`. @@ -169,7 +146,6 @@ class PhaseMapperRDFC(PhaseMapper): Product of the Jacobi matrix (which is not explicitely calculated) with the vector. ''' -# self._log.debug('Calling jac_dot') # TODO: Profiler says this was slow... assert len(vector) == self.n, \ 'vector size not compatible! vector: {}, size: {}'.format(len(vector), self.n) self.u_mag[self.kernel.slice_mag], self.v_mag[self.kernel.slice_mag] = \ @@ -193,54 +169,16 @@ class PhaseMapperRDFC(PhaseMapper): the vector, which has ``2*N**2`` entries like a 2D magnetic projection. ''' -# self._log.debug('Calling jac_T_dot') # TODO: Profiler says this was slow... assert len(vector) == self.m, \ 'vector size not compatible! vector: {}, size: {}'.format(len(vector), self.m) self.mag_adj[self.kernel.slice_mag] = vector.reshape(self.kernel.dim_uv) - mag_adj_fft = self._irfft2_adj(self.mag_adj) - self.u_mag_fft[...] = mag_adj_fft * self.kernel.u_fft # u/v_mag_fft is just used as cache - self.v_mag_fft[...] = mag_adj_fft * -self.kernel.v_fft # they are really 'adjoint' phases - u_phase_adj = self._rfft2_adj(self.u_mag_fft)[self.kernel.slice_phase] - v_phase_adj = self._rfft2_adj(self.v_mag_fft)[self.kernel.slice_phase] + mag_adj_fft = fft.irfftn_adj(self.mag_adj) + u_phase_adj_fft = mag_adj_fft * self.kernel.u_fft + v_phase_adj_fft = mag_adj_fft * -self.kernel.v_fft + u_phase_adj = fft.rfftn_adj(u_phase_adj_fft)[self.kernel.slice_phase] + v_phase_adj = fft.rfftn_adj(v_phase_adj_fft)[self.kernel.slice_phase] return -np.concatenate((u_phase_adj.flatten(), v_phase_adj.flatten())) # TODO: why minus? - def _rfft2_adj_fftw(self, phase_adj): - x = phase_adj - xp = np.zeros(self.kernel.dim_pad, dtype=np.complex64) - xp[:, :x.shape[1]] = x - phase_adj_fft = np.fft.ifftn(xp).real * np.prod(self.kernel.dim_pad) # TODO: Convert to FFTW - return phase_adj_fft - import pyfftw - kernel = self.kernel - self.phase_adj = np.zeros(kernel.dim_pad, dtype=np.complex64) - self.phase_adj = pyfftw.n_byte_align(self.phase_adj, pyfftw.simd_alignment) - self.phase_adj[:, :phase_adj.shape[1]] = phase_adj - self._ifft2 = pyfftw.builders.ifftn(self.u_mag, threads=kernel.threads) - phase_adj_fft_TEST = self._ifft2(self.phase_adj).real * np.prod(self.kernel.dim_pad) - import pdb; pdb.set_trace() - return phase_adj_fft - - def _irfft2_adj_fftw(self, mag_adj_fft): - x = mag_adj_fft - n_out = self.kernel.dim_fft[1] - xp = np.zeros(self.kernel.dim_pad, dtype=np.complex64) - xp[...] = np.fft.fft(x, axis=1) / self.kernel.dim_pad[1] # TODO: Convert to FFTW - xp[:, 1:n_out - 1] += np.conj(xp[:, :n_out-1:-1]) # if even (guaranteed for dim_pad) - mag_adj = np.fft.fft(xp[:, :n_out], axis=0) / self.kernel.dim_pad[0] # TODO: Convert to FFTW - return mag_adj - import pyfftw - kernel = self.kernel - self.mag_adj = np.zeros(kernel.dim_pad, dtype=np.complex64) - self.mag_adj = pyfftw.n_byte_align(self.mag_adj, pyfftw.simd_alignment) - self._fft_ax0 = pyfftw.FFTW(self.mag_adj, threads=kernel.threads) - self._fft_ax1 = pyfftw.FFTW(self.mag_adj, threads=kernel.threads) - n_out = self.kernel.dim_fft[1] - self.mag_adj[...] = np.fft.fft(phase_adj, axis=1) / self.kernel.dim_pad[1] # TODO: Convert to FFTW - self.mag_adj[:, 1:n_out - 1] += np.conj(self.mag_adj[:, :n_out-1:-1]) # if even (guaranteed for dim_pad) - mag_adj_TEST = np.fft.fft(self.mag_adj[:, :n_out], axis=0) / self.kernel.dim_pad[0] # TODO: Convert to FFTW - import pdb; pdb.set_trace() - return mag_adj - class PhaseMapperRDRC(PhaseMapper): @@ -341,7 +279,6 @@ class PhaseMapperRDRC(PhaseMapper): Product of the Jacobi matrix (which is not explicitely calculated) with the vector. ''' - self._log.debug('Calling jac_dot') assert len(vector) == self.n, \ 'vector size not compatible! vector: {}, size: {}'.format(len(vector), self.n) v_dim, u_dim = self.kernel.dim_uv @@ -377,7 +314,6 @@ class PhaseMapperRDRC(PhaseMapper): the vector, which has ``2*N**2`` entries like a 2D magnetic projection. ''' - self._log.debug('Calling jac_T_dot') assert len(vector) == self.m, \ 'vector size not compatible! vector: {}, size: {}'.format(len(vector), self.m) v_dim, u_dim = self.dim_uv @@ -490,7 +426,6 @@ class PhaseMapperFDFC(PhaseMapper): Product of the Jacobi matrix (which is not explicitely calculated) with the vector. ''' - self._log.debug('Calling jac_dot') assert len(vector) == self.n, \ 'vector size not compatible! vector: {}, size: {}'.format(len(vector), self.n) mag_proj = MagData(self.a, np.zeros((3, 1)+self.dim_uv)) @@ -500,7 +435,6 @@ class PhaseMapperFDFC(PhaseMapper): return self(mag_proj).phase_vec def jac_T_dot(self, vector): - self._log.debug('Calling jac_T_dot') raise NotImplementedError() # TODO: Implement! @@ -574,12 +508,10 @@ class PhaseMapperElectric(PhaseMapper): return PhaseMap(mag_data.a, phase) def jac_dot(self, vector): - self._log.debug('Calling jac_dot') raise NotImplementedError() # TODO: Implement? def jac_T_dot(self, vector): - self._log.debug('Calling jac_T_dot') raise NotImplementedError() # TODO: Implement? @@ -603,7 +535,8 @@ def pm(mag_data, axis='z', dim_uv=None, b_0=1): mag_data : :class:`~pyramid.magdata.MagData` The reconstructed magnetic distribution as a :class:`~.MagData` object. - ''' # TODO: use_fftw false to notes + ''' + _log.debug('Calling pm') projector = SimpleProjector(mag_data.dim, axis=axis, dim_uv=dim_uv) - phasemapper = PhaseMapperRDFC(Kernel(mag_data.a, projector.dim_uv, use_fftw=False)) + phasemapper = PhaseMapperRDFC(Kernel(mag_data.a, projector.dim_uv)) return phasemapper(projector(mag_data)) diff --git a/pyramid/projector.py b/pyramid/projector.py index f28487db26be87ddd71f4e7a5552d5df9890762f..48e69443f4e021b765419c658f57b2f95739afc2 100644 --- a/pyramid/projector.py +++ b/pyramid/projector.py @@ -80,14 +80,13 @@ class Projector(object): return 'Projector(dim=%s, dim_uv=%s, coeff=%s)' % (self.dim, self.dim_uv, self.coeff) def __call__(self, mag_data): - self._log.debug('Calling as function') + self._log.debug('Calling __call__') mag_proj = MagData(mag_data.a, np.zeros((3, 1)+self.dim_uv)) magnitude_proj = self.jac_dot(mag_data.mag_vec).reshape((2, )+self.dim_uv) mag_proj.magnitude[0:2, 0, ...] = magnitude_proj return mag_proj def _vector_field_projection(self, vector): -# self._log.debug('Calling _vector_field_projection') # TODO: Profiler says this was slow... size_2d, size_3d = self.size_2d, self.size_3d result = np.zeros(2*size_2d) # Go over all possible component projections (z, y, x) to (u, v): @@ -106,7 +105,6 @@ class Projector(object): return result def _vector_field_projection_T(self, vector): -# self._log.debug('Calling _vector_field_projection_T') # TODO: Profiler says this was slow... size_2d, size_3d = self.size_2d, self.size_3d result = np.zeros(3*size_3d) # Go over all possible component projections (u, v) to (z, y, x): @@ -148,12 +146,9 @@ class Projector(object): always`size_2d`. ''' -# self._log.debug('Calling jac_dot') # TODO: Profiler says this was slow... if len(vector) == 3*self.size_3d: # mode == 'vector' -# self._log.debug('mode == vector') # TODO: Profiler says this was slow... return self._vector_field_projection(vector) elif len(vector) == self.size_3d: # mode == 'scalar' -# self._log.debug('mode == scalar') # TODO: Profiler says this was slow... return self._scalar_field_projection(vector) else: raise AssertionError('Vector size has to be suited either for ' @@ -175,12 +170,9 @@ class Projector(object): of the :class:`~.Projector` object. ''' -# self._log.debug('Calling jac_T_dot') # TODO: Profiler says this was slow... if len(vector) == 2*self.size_2d: # mode == 'vector' -# self._log.debug('mode == vector') # TODO: Profiler says this was slow... return self._vector_field_projection_T(vector) elif len(vector) == self.size_2d: # mode == 'scalar' -# self._log.debug('mode == scalar') # TODO: Profiler says this was slow... return self._scalar_field_projection_T(vector) else: raise AssertionError('Vector size has to be suited either for ' @@ -227,17 +219,14 @@ class XTiltProjector(Projector): def __init__(self, dim, tilt, dim_uv=None): def get_position(p, m, b, size): - self._log.debug('Calling get_position') y, x = np.array(p)[:, 0]+0.5, np.array(p)[:, 1]+0.5 return (y-m*x-b)/np.sqrt(m**2+1) + size/2. def get_impact(pos, r, size): - self._log.debug('Calling get_impact') return [x for x in np.arange(np.floor(pos-r), np.floor(pos+r)+1, dtype=int) if 0 <= x < size] def get_weight(delta, rho): # use circles to represent the voxels - self._log.debug('Calling get_weight') lo, up = delta-rho, delta+rho # Upper boundary: if up >= 1: diff --git a/pyramid/util.py b/pyramid/util.py deleted file mode 100644 index 40ce45a40a87cabd666e62fa407de7fd652e4c9e..0000000000000000000000000000000000000000 --- a/pyramid/util.py +++ /dev/null @@ -1,131 +0,0 @@ -# -*- coding: utf-8 -*- -""" -Created on Wed Nov 26 10:52:32 2014 - -@author: Jan -""" - - -import numpy as np - - -__all__ = ['IndexConverter3D', 'IndexConverter2D'] - - -class IndexConverter3D(object): - - # TODO: Document everything! 3comp: 3 components! - - def __init__(self, dim): - assert len(dim) == 3, 'Dimensions have to be two-dimensioal!' - self.dim = dim - self.size_3d = np.prod(dim) - self.size_2d = dim[2]*dim[1] - - def ind_to_coord(self, ind): - assert ind < self.size_3d, 'Index out of range!' - z, remain = int(ind/self.size_2d), ind % self.size_2d - y, x = int(remain/self.dim[2]), remain % self.dim[2] - return (z, y, x) - - def ind3comp_to_coord(self, ind): - assert ind < 3 * self.size_3d, 'Index out of range!' - c, remain = int(ind/self.size_3d), ind % self.size_3d - z, remain = int(remain/self.size_2d), remain % self.size_2d - y, x = int(remain/self.dim[2]), remain % self.dim[2] - return (c, z, y, x) - - def coord_to_ind(self, coord): - if coord is None: - return None - z, y, x = coord - ind = z*self.size_2d + y*self.dim[2] + x - assert ind < self.size_3d, 'Index out of range!' - return ind - - def coord_to_ind3comp(self, coord): - if coord is None: - return [None, None, None] - z, y, x = coord - ind = [c*self.size_3d + z*self.size_2d + y*self.dim[2] + x for c in range(3)] - assert ind[-1] < 3 * self.size_3d, 'Index out of range!' - return ind - - def get_neighbour_coord(self, coord): - def validate_coord(coord): - dim = self.dim_uv - if (0 <= coord[0] < dim[0]) and (0 <= coord[1] < dim[1]) and (0 <= coord[2] < dim[2]): - return coord - else: - return None - - z, y, x = coord - t, d = (z-1, y, x), (z+1, y, x) # t: top, d: down - f, b = (z, y-1, x), (z, y+1, x) # f: front, b: back - l, r = (z, y, x-1), (z, y, x+1) # l: left, r: right - return [validate_coord(i) for i in [t, d, f, b, l, r]] - - def get_neighbour_ind(self, coord): - neighbours = [self.coord_to_ind(i) for i in self.get_neighbour_coord(coord)] - return np.reshape(neighbours, (3, 2)) - - def get_neighbour_ind3comp(self, coord): - neighbours = [self.coord_to_ind3comp(i) for i in self.get_neighbour_coord(coord)] - return np.reshape(np.swapaxes(neighbours, 0, 1), (3, 3, 2)) - - -class IndexConverter2D(object): - - def __init__(self, dim_uv): - assert len(dim_uv) == 2, 'Dimensions have to be two-dimensioal!' - self.dim_uv = dim_uv - self.size_2d = np.prod(dim_uv) - - def ind_to_coord(self, ind): - assert ind < self.size_2d, 'Index out of range!' - v, u = int(ind/self.dim_uv[1]), ind % self.dim_uv[1] - return v, u - - def ind2comp_to_coord(self, ind): - assert ind < 2 * self.size_2d, 'Index out of range!' - c, remain = int(ind/self.size_2d), ind % self.size_2d - v, u = int(remain/self.dim_uv[1]), remain % self.dim_uv[1] - return c, v, u - - def coord_to_ind(self, coord): - if coord is None: - return None - v, u = coord - ind = v*self.dim_uv[1] + u - assert ind < self.size_2d, 'Index out of range!' - return ind - - def coord_to_ind2comp(self, coord): - if coord is None: - return [None, None] - v, u = coord - ind = [i*self.size_2d + v*self.dim_uv[1] + u for i in range(2)] - assert ind[-1] < 2 * self.size_2d, 'Index out of range!' - return ind - - def get_neighbour_coord(self, coord): - def validate_coord(coord): - if (0 <= coord[0] < self.dim_uv[0]) and (0 <= coord[1] < self.dim_uv[1]): - return coord - else: - return None - v, u = coord - f, b = (v-1, u), (v+1, u) # f: front, b: back - l, r = (v, u-1), (v, u+1) # l: left, r: right - return [validate_coord(i) for i in [f, b, l, r]] - - def get_neighbour_ind(self, coord): - neighbours = [self.coord_to_ind(i) for i in self.get_neighbour_coord(coord)] - return np.reshape(neighbours, (2, 2)) - - def get_neighbour_ind2comp(self, coord): - neighbours = [self.coord_to_ind2comp(i) for i in self.get_neighbour_coord(coord)] - return np.reshape(np.swapaxes(neighbours, 0, 1), (2, 2, 2)) - - -# TODO: method for constructing 3D mask from 2D masks? diff --git a/pyramid/version.py b/pyramid/version.py index 2a9ac58e483f54930bf7081498f4532538753452..e604916aeed68543a5cb5bef5572ca62b7d13d7a 100644 --- a/pyramid/version.py +++ b/pyramid/version.py @@ -1,3 +1,3 @@ # THIS FILE IS GENERATED FROM THE PYRAMID SETUP.PY -version="0.1.0-dev" -hg_revision="ac57353bbe0b+" +version = "0.1.0-dev" +hg_revision = "9013fd38a1b6+" diff --git a/scripts/collaborations/patrick_nanowire_reconstruction.py b/scripts/collaborations/patrick_nanowire_reconstruction.py index 7a60887a30145e0b9d12efee56cde1ab774ee37d..deb5d335ab965d6709aef20468929ca8d757fb2a 100644 --- a/scripts/collaborations/patrick_nanowire_reconstruction.py +++ b/scripts/collaborations/patrick_nanowire_reconstruction.py @@ -26,13 +26,13 @@ gain = 5 b_0 = 1 lam = 1E-6 PATH = '../../output/patrick/' -PHASE = '-10_pha' -MASK = 'mask_-10_elong_0' +PHASE = '30_pha' +MASK = 'mask30_elong_5' longFOV = True longFOV_string = np.where(longFOV, 'longFOV', 'normalFOV') IMAGENAME = '{}_{}_{}_'.format(MASK, PHASE, longFOV_string) -PHASE_MAX = 0.92 # -10°: 0.92, 30°: 7.68 -PHASE_MIN = -16.85 # -10°: -16.85, 30°: -18.89 +PHASE_MAX = 7.68 # -10°: 0.92, 30°: 7.68 +PHASE_MIN = -18.89 # -10°: -16.85, 30°: -18.89 PHASE_DELTA = PHASE_MAX - PHASE_MIN ################################################################################################### @@ -45,9 +45,9 @@ im_phase = Image.open(PATH+PHASE+'.tif') mask = np.array(np.array(im_mask)/255, dtype=bool) dim_uv = mask.shape phase = (np.array(im_phase)/255.-0.5) * PHASE_DELTA -pad = dim_uv[0] - phase.shape[0] +pad = dim_uv[0] - phase.shape[0]#25 phase_pad = np.zeros(dim_uv) -phase_pad[pad:, :] = phase +phase_pad[pad:, :] = phase#[pad:-pad, pad:-pad] = phase mask = np.expand_dims(mask, axis=0) dim = mask.shape @@ -60,8 +60,8 @@ data_set.append(phase_map_pad, SimpleProjector(dim)) # Create Se_inv if longFOV: - mask_Se = np.ones(dim_uv) - mask_Se[:pad, :] = 0 + mask_Se = np.ones(dim_uv)#np.zeros(dim_uv) + mask_Se[:pad, :] = 0#[pad:-pad, pad:-pad] = 1 data_set.set_Se_inv_diag_with_masks([mask_Se]) regularisator = FirstOrderRegularisator(mask, lam, p=2) @@ -70,7 +70,7 @@ with TakeTime('reconstruction time'): mag_data_rec = rc.optimize_linear(data_set, regularisator=regularisator, max_iter=50) phase_map_rec_pad = pm(mag_data_rec) -phase_map_rec = PhaseMap(a, phase_map_rec_pad.phase[pad:, :]) +phase_map_rec = PhaseMap(a, phase_map_rec_pad.phase[pad:, :])#[pad:-pad, pad:-pad]) phase_map_diff = phase_map_rec - phase_map # Display the reconstructed phase map and holography image: diff --git a/scripts/collaborations/sudoku.py b/scripts/collaborations/sudoku.py new file mode 100644 index 0000000000000000000000000000000000000000..03ef1bb5fc1c8d8dffe9e927793c3d383247c042 --- /dev/null +++ b/scripts/collaborations/sudoku.py @@ -0,0 +1,74 @@ +# -*- coding: utf-8 -*- +""" +Created on Fri Dec 05 09:24:02 2014 + +@author: Jan +""" + + +import numpy as np + + +class Cell(object): + + def __init__(self): + self.reset() + + def __str__(self): + return 'value: {}, possibilities: {}'.format(self.value, self.possibilities) + + def reset(self): + self.value = 0 + self.possibilities = range(1, 10) + np.random.shuffle(self.possibilities) + + +class Field(object): + + def __init__(self): + self.field = np.asarray([[Cell() for i in range(9)] for j in range(9)]) + self.fill() + + def __call__(self): + return np.asarray([[self.field[j, i].value for i in range(9)] for j in range(9)]) + + def get_i(self, pos): + return pos % 9 + + def get_j(self, pos): + return pos // 9 + + def get_cell(self, pos): + return self.field[self.get_j(pos), self.get_i(pos)] + + def check_row(self, pos): + cell_val = self.get_cell(pos).value + row = self.field[self.get_j(pos), :] + row_vals = [cell.value for cell in row] + row_vals[self.get_i(pos)] = 0 + print 'i:{}, j:{}, row_vals:{}'.format(self.get_i(pos), self.get_j(pos), row_vals) + print cell_val in row_vals + if cell_val in row_vals: + return False + else: + return True + + def check_square(self, pos): + return True + + def fill(self): + pos = 0 + while pos < 81: + cell = self.get_cell(pos) + cell.value = cell.possibilities.pop() + print self() + print cell + if self.check_row(pos) and self.check_square(pos): + pos += 1 + else: + self.get_cell(pos).reset() + pos -= 1 + print 'Position: {:2}, Value: {}'.format(pos, cell.value) + +test = Field() +print test() diff --git a/scripts/reconstruction/reconstruction_linear_test.py b/scripts/reconstruction/reconstruction_linear_test.py index e6a74cc028a7b34f8225a28c11bac7e69570be52..b26c728f64682a27f7a722fcb37d69c7a70a216b 100644 --- a/scripts/reconstruction/reconstruction_linear_test.py +++ b/scripts/reconstruction/reconstruction_linear_test.py @@ -52,9 +52,9 @@ shape = mc.Shapes.disc(dim, center, radius_shell, height) magnitude = mc.create_mag_dist_vortex(shape) mag_data = MagData(a, magnitude) -mag_data.quiver_plot('z-projection', proj_axis='z') -mag_data.quiver_plot('y-projection', proj_axis='y') -mag_data.quiver_plot3d('Original distribution') +#mag_data.quiver_plot('z-projection', proj_axis='z') +#mag_data.quiver_plot('y-projection', proj_axis='y') +#mag_data.quiver_plot3d('Original distribution') tilts_full = np.linspace(-pi/2, pi/2, num=count/2, endpoint=False) tilts_miss = np.linspace(-pi/3, pi/3, num=count/2, endpoint=False) @@ -98,5 +98,7 @@ with TakeTime('reconstruction'): print('--Plot stuff') mag_data_opt.quiver_plot3d('Reconstructed distribution') -(mag_data_opt - mag_data).quiver_plot3d('Difference') -phase_maps_opt = data.create_phase_maps(mag_data_opt) +#(mag_data_opt - mag_data).quiver_plot3d('Difference') +#phase_maps_opt = data.create_phase_maps(mag_data_opt) + +# TODO: iterations in jutil is one to many! diff --git a/scripts/test methods/compare_methods.py b/scripts/test methods/compare_methods.py index dabd9f31ded1f73c62f8213ce150fd622e55c9d8..9c33812e35ac1ec9ef220c09b4316bbdb25874a7 100644 --- a/scripts/test methods/compare_methods.py +++ b/scripts/test methods/compare_methods.py @@ -16,6 +16,7 @@ from pyramid.projector import SimpleProjector from pyramid.phasemapper import PhaseMapperRDRC, PhaseMapperRDFC, PhaseMapperFDFC from pyramid.kernel import Kernel from pyramid.magdata import MagData +from pyramid import fft import logging import logging.config @@ -31,7 +32,7 @@ b_0 = 1.0 # in T a = 1.0 # in nm phi = pi/4 gain = 'auto' -dim = (16, 128, 128) # in px (z, y, x) +dim = (128, 128, 128) # in px (z, y, x) # Create magnetic shape: geometry = 'disc' @@ -56,30 +57,41 @@ elif geometry == 'sphere': mag_data = MagData(a, mc.create_mag_dist_homog(mag_shape, phi)) projector = SimpleProjector(dim) projection = projector(mag_data) -# Construct PhaseMapper objects: -pm_real_slow = PhaseMapperRDRC(Kernel(a, projector.dim_uv, b_0), numcore=False) -pm_real_fast = PhaseMapperRDRC(Kernel(a, projector.dim_uv, b_0), numcore=True) -pm_conv_slow = PhaseMapperRDFC(Kernel(a, projector.dim_uv, b_0, use_fftw=False)) -pm_conv_fast = PhaseMapperRDFC(Kernel(a, projector.dim_uv, b_0, use_fftw=True)) -pm_four_pad0 = PhaseMapperFDFC(a, projector.dim_uv, b_0, padding=0) -pm_four_pad1 = PhaseMapperFDFC(a, projector.dim_uv, b_0, padding=1) -# Get times for different approaches: +# RDRC no numcore: +pm_real_slow = PhaseMapperRDRC(Kernel(a, projector.dim_uv, b_0), numcore=False) start_time = time.time() phase_map_real = pm_real_slow(projection) print 'Time for RDRC no numcore :', time.time() - start_time + +# RDRC with numcore: +pm_real_fast = PhaseMapperRDRC(Kernel(a, projector.dim_uv, b_0), numcore=True) start_time = time.time() phase_map_real = pm_real_fast(projection) print 'Time for RDRC numcore :', time.time() - start_time + +# RDFC numpy convolution: +fft.configure_backend('numpy') +pm_conv_slow = PhaseMapperRDFC(Kernel(a, projector.dim_uv, b_0)) start_time = time.time() phase_map_conv = pm_conv_slow(projection) print 'Time for RDFC numpy conv.:', time.time() - start_time + +# RDFC FFTW convolution: +fft.configure_backend('fftw') +pm_conv_fast = PhaseMapperRDFC(Kernel(a, projector.dim_uv, b_0)) start_time = time.time() phase_map_conv = pm_conv_fast(projection) print 'Time for RDFC FFTW conv.:', time.time() - start_time + +# FDFC padding 0: +pm_four_pad0 = PhaseMapperFDFC(a, projector.dim_uv, b_0, padding=0) start_time = time.time() phase_map_four = pm_four_pad0(projection) print 'Time for FDFC padding 0 :', time.time() - start_time + +# FDFC padding 1: +pm_four_pad1 = PhaseMapperFDFC(a, projector.dim_uv, b_0, padding=1) start_time = time.time() phase_map_four = pm_four_pad1(projection) print 'Time for FDFC padding 1 :', time.time() - start_time diff --git a/setup.py b/setup.py index 962fbe537f78ebf59adb189e2cd73b12040c45dd..8de8d664e173d308010164a588869959e9f04dce 100644 --- a/setup.py +++ b/setup.py @@ -69,8 +69,8 @@ def hg_version(): def write_version_py(filename='pyramid/version.py'): version_string = "# THIS FILE IS GENERATED FROM THE PYRAMID SETUP.PY\n" + \ - 'version="{}"\n'.format(VERSION) + \ - 'hg_revision="{}"\n'.format(hg_version()) + 'version = "{}"\n'.format(VERSION) + \ + 'hg_revision = "{}"\n'.format(hg_version()) with open(os.path.join(os.path.dirname(__file__), filename), 'w') as vfile: vfile.write(version_string) @@ -107,7 +107,7 @@ setup(name=DISTNAME, ext_package='pyramid/numcore', ext_modules=[ Extension('phasemapper_core', ['pyramid/numcore/phasemapper_core.pyx'], - include_dirs=[numpy.get_include(), numpy.get_numarray_include()], + include_dirs=[numpy.get_include()], extra_compile_args=['-march=native', '-mtune=native'] ) ]