From d136112fabf661c9d0c159771e13fce640ade8b5 Mon Sep 17 00:00:00 2001 From: Jan Caron <j.caron@fz-juelich.de> Date: Tue, 21 Jul 2015 17:56:56 +0200 Subject: [PATCH] Dedicated class for polynomial ramps of arbitrary order! Cleanup and documentation! ramp: New class for polynomial ramps. Instantiated in the ForwardModel. forwardmodel: Now uses new ramp class. phasemapper: Ramp functionality moved to ramp class. reconstruction: Ramp order not used, ramp can be now retrieved from the ramp class after reconstruction. analytic, magcreator: Better and consistent definition of pixel centers and their influence on the phase. testing: Minor corrections for new syntax. --- pyramid/__init__.py | 11 +- pyramid/analytic.py | 28 ++- pyramid/colormap.py | 153 +++++++++----- pyramid/config.py | 1 + pyramid/costfunction.py | 14 +- pyramid/dataset.py | 34 +++- pyramid/diagnostics.py | 2 +- pyramid/fft.py | 3 +- pyramid/forwardmodel.py | 117 +++++------ pyramid/kernel.py | 2 +- pyramid/magcreator.py | 107 ++++------ pyramid/magdata.py | 70 +------ pyramid/phasemap.py | 85 +------- pyramid/phasemapper.py | 54 +---- pyramid/projector.py | 5 +- pyramid/quaternion.py | 3 + pyramid/ramp.py | 190 ++++++++++++++++++ pyramid/reconstruction.py | 17 +- pyramid/regularisator.py | 47 +++-- pyramid/version.py | 2 +- scripts/phasemap/phasemap_from_image.py | 19 +- .../reconstruction_2d_from_phasemap.py | 34 ++-- .../reconstruction_3d_from_magdata.py | 30 +-- scripts/temp/test_dim_uv_projection.py | 10 +- scripts/temp/warning_control.py | 24 +++ tests/test_analytic.py | 5 +- tests/test_magcreator.py | 28 +-- tests/test_magcreator/ref_ellipsoid.npy | Bin 584 -> 584 bytes tests/test_regularisator.py | 2 +- 29 files changed, 586 insertions(+), 511 deletions(-) create mode 100644 pyramid/ramp.py create mode 100644 scripts/temp/warning_control.py diff --git a/pyramid/__init__.py b/pyramid/__init__.py index 9b7f840..6765e79 100644 --- a/pyramid/__init__.py +++ b/pyramid/__init__.py @@ -30,10 +30,14 @@ reconstruction Reconstruct magnetic distributions from given phasemaps. regularisator Class to instantiate different regularisation strategies. +ramp + Class which is used to add polynomial ramps to phasemaps. diagnostics Class to calculate diagnostics quaternion Class which is used for easy rotations in the Projector classes. +colormap + Class which implements a custom direction encoding colormap. fft Class for custom FFT functions using numpy or FFTW. @@ -46,11 +50,8 @@ numcore from . import analytic -from . import analytic as an from . import magcreator -from . import magcreator as mc from . import reconstruction -from . import reconstruction as rc from . import fft from .costfunction import * # analysis:ignore from .dataset import * # analysis:ignore @@ -62,6 +63,7 @@ from .phasemap import * # analysis:ignore from .phasemapper import * # analysis:ignore from .projector import * # analysis:ignore from .regularisator import * # analysis:ignore +from .ramp import * # analysis:ignore from .quaternion import * # analysis:ignore from .colormap import * # analysis:ignore from .config import * # analysis:ignore @@ -73,7 +75,7 @@ _log = logging.getLogger(__name__) _log.info("Starting PYRAMID V{} HG{}".format(__version__, __hg_revision__)) del logging -__all__ = ['analytic', 'magcreator', 'reconstruction', 'fft', 'an', 'mc', 'rc'] +__all__ = ['analytic', 'magcreator', 'reconstruction', 'fft'] __all__.extend(costfunction.__all__) __all__.extend(dataset.__all__) __all__.extend(diagnostics.__all__) @@ -84,5 +86,6 @@ __all__.extend(phasemap.__all__) __all__.extend(phasemapper.__all__) __all__.extend(projector.__all__) __all__.extend(regularisator.__all__) +__all__.extend(ramp.__all__) __all__.extend(quaternion.__all__) __all__.extend(colormap.__all__) diff --git a/pyramid/analytic.py b/pyramid/analytic.py index 3585c89..e7ee296 100644 --- a/pyramid/analytic.py +++ b/pyramid/analytic.py @@ -68,8 +68,8 @@ def phase_mag_slab(dim, a, phi, center, width, b_0=1): + F_0(y-y0+Ly/2, x-x0+Lx/2))) # Process input parameters: z_dim, y_dim, x_dim = dim - y0 = a * (center[1] + 0.5) # y0, x0 define the center of a pixel, - x0 = a * (center[2] + 0.5) # hence: (cellindex + 0.5) * grid spacing + y0 = a * center[1] # y0, x0 define the center of a pixel, + x0 = a * center[2] # hence: (cellindex + 0.5) * grid spacing Lz, Ly, Lx = a * width[0], a * width[1], a * width[2] coeff = - b_0 / (4*PHI_0) # Minus because of negative z-direction # Create grid: @@ -111,16 +111,15 @@ def phase_mag_disc(dim, a, phi, center, radius, height, b_0=1): # Function for the phase: def phi_mag(x, y): - r = np.hypot(x - x0, y - y0) - r[center[1], center[2]] = 1E-30 - result = coeff * Lz * ((y - y0) * np.cos(phi) - (x - x0) * np.sin(phi)) - result *= np.where(r <= R, 1, (R / r) ** 2) + r = np.hypot(x-x0, y-y0) + result = coeff * Lz * ((y-y0) * np.cos(phi) - (x-x0) * np.sin(phi)) + result *= np.where(r <= R, 1, (R / (r+1E-30)) ** 2) return result # Process input parameters: z_dim, y_dim, x_dim = dim - y0 = a * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel, - x0 = a * (center[2] + 0.5) # hence: cellindex + 0.5 + y0 = a * center[1] + x0 = a * center[2] Lz = a * height R = a * radius coeff = pi * b_0 / (2*PHI_0) # Minus is gone because of negative z-direction @@ -161,16 +160,15 @@ def phase_mag_sphere(dim, a, phi, center, radius, b_0=1): # Function for the phase: def phi_mag(x, y): - r = np.hypot(x - x0, y - y0) - r[center[1], center[2]] = 1E-30 - result = coeff * R ** 3 / r ** 2 * ((y - y0) * np.cos(phi) - (x - x0) * np.sin(phi)) + r = np.hypot(x-x0, y-y0) + result = coeff * R ** 3 / (r+1E-30) ** 2 * ((y-y0) * np.cos(phi) - (x-x0) * np.sin(phi)) result *= np.where(r > R, 1, (1 - (1 - (r / R) ** 2) ** (3. / 2.))) return result # Process input parameters: z_dim, y_dim, x_dim = dim - y0 = a * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel, - x0 = a * (center[2] + 0.5) # hence: cellindex + 0.5 + y0 = a * center[1] + x0 = a * center[2] R = a * radius coeff = 2./3. * pi * b_0 / PHI_0 # Minus is gone because of negative z-direction # Create grid: @@ -216,8 +214,8 @@ def phase_mag_vortex(dim, a, center, radius, height, b_0=1): # Process input parameters: z_dim, y_dim, x_dim = dim - y0 = a * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel, - x0 = a * (center[2] + 0.5) # hence: cellindex + 0.5 + y0 = a * center[1] + x0 = a * center[2] Lz = a * height R = a * radius coeff = - pi * b_0 * Lz / PHI_0 # Minus because of negative z-direction diff --git a/pyramid/colormap.py b/pyramid/colormap.py index 94f3e49..4f9e7b4 100644 --- a/pyramid/colormap.py +++ b/pyramid/colormap.py @@ -1,11 +1,9 @@ # -*- coding: utf-8 -*- -""" -Created on Wed Jul 08 15:43:06 2015 - -@author: Jan -""" - -# TODO: Docstrings! +# Copyright 2014 by Forschungszentrum Juelich GmbH +# Author: J. Caron +# +"""This module provides a custom :class:`~.DirectionalColormap` colormap class which has a few +additional functions and can encode three-dimensional directions.""" import numpy as np @@ -21,6 +19,28 @@ __all__ = ['DirectionalColormap'] class DirectionalColormap(mpl.colors.LinearSegmentedColormap): + '''Colormap subclass for encoding 3D-directions with colors.. + + This class is a subclass of the :class:`~matplotlib.pyplot.colors.LinearSegmentedColormap` + class with a few classmethods which can be used for convenience. The + :method:`.display_colorwheel` method can be used to display a colorhweel which is used for + the directional encoding and three `rgb_from_...` methods are used to calculate rgb tuples + from 3D-directions, angles or directly from a colorindex and a saturation value. This is + useful for quiverplots where the arrow colors can be set individually by providing said rgb- + tuples. Arrows in plane will be encoded with full color saturation and arrow pointing down + will gradually lose saturation until they are black when pointing down. Arrows pointing up + will 'oversaturate' (the saturation value will go from 1 up to 2), which in consequence will + partially add the inverse colormap to the arrows turning them white if they point up (rgb- + tuple: 255, 255, 255). + + Attributes + ---------- + inverted: boolean, optional + Flag which is used to invert the internal colormap (default is False). + Just influences the classical use as a normal colormap, not the classmethods! + + ''' + _log = logging.getLogger(__name__+'.DirectionalColormap') CDICT = {'red': [(0.00, 0.0, 0.0), @@ -62,43 +82,8 @@ class DirectionalColormap(mpl.colors.LinearSegmentedColormap): HOLO_CMAP = mpl.colors.LinearSegmentedColormap('my_colormap', CDICT, 256) HOLO_CMAP_INV = mpl.colors.LinearSegmentedColormap('my_colormap', CDICT_INV, 256) - def __init__(self, inverted=False): self._log.debug('Calling __create_directional_colormap') -# r, g, b = [], [], [] # RGB lists -# # Create saturation lists to encode up and down directions via black and white colors. -# # example for 5 levels from black (down) to color (in-plane) to white: -# # pos_sat: [ 0. 0.5 1. 1. 1. ] -# # neg_sat: [ 0. 0. 0. 0.5 1. ] -# center = levels//2 -# pos_sat = np.ones(levels) -# pos_sat[0:center] = [i/center for i in range(center)] -# neg_sat = np.zeros(levels) -# neg_sat[center+1:] = [(i+1)/center for i in range(center)] -# -# # Iterate over all levels (the center level represents in-plane moments!): -# for i in range(levels): -# inter_points = np.linspace(i/levels, (i+1)/levels, 5) # interval points, current level -# # Red: -# r.append((inter_points[0], 0, neg_sat[i])) -# r.append((inter_points[1], pos_sat[i], pos_sat[i])) -# r.append((inter_points[2], pos_sat[i], pos_sat[i])) -# r.append((inter_points[3], neg_sat[i], neg_sat[i])) -# r.append((inter_points[4], neg_sat[i], 0)) -# # Green: -# g.append((inter_points[0], 0, neg_sat[i])) -# g.append((inter_points[1], neg_sat[i], neg_sat[i])) -# g.append((inter_points[2], pos_sat[i], pos_sat[i])) -# g.append((inter_points[3], pos_sat[i], pos_sat[i])) -# g.append((inter_points[4], neg_sat[i], 0)) -# # Blue -# b.append((inter_points[0], 0, pos_sat[i])) -# b.append((inter_points[1], neg_sat[i], neg_sat[i])) -# b.append((inter_points[2], neg_sat[i], neg_sat[i])) -# b.append((inter_points[3], neg_sat[i], neg_sat[i])) -# b.append((inter_points[4], pos_sat[i], 0)) -# # Combine to color dictionary and return: -# cdict = {'red': r, 'green': g, 'blue': b} cdict = self.CDICT_INV if inverted else self.CDICT super(DirectionalColormap, self).__init__('directional_colormap', cdict, N=256) self._log.debug('Created '+str(self)) @@ -109,13 +94,15 @@ class DirectionalColormap(mpl.colors.LinearSegmentedColormap): Parameters ---------- - None + mode : {'white_to_color', 'color_to_black', 'black_to_color', 'white_to_color_to_black'} + Optional string for determining the color scheme of the color wheel. Describes the + order of colors from the center to the outline. Returns ------- None - ''' # TODO: mode docstring! + ''' cls._log.debug('Calling display_color_wheel') yy, xx = np.indices((512, 512)) - 256 r = np.hypot(xx, yy) @@ -123,7 +110,7 @@ class DirectionalColormap(mpl.colors.LinearSegmentedColormap): colorind = (1 + np.arctan2(yy, xx)/np.pi) / 2 saturation = r / 256 # 0 in center, 1 at borders of circle! if mode == 'black_to_color': - pass + pass # no further modification necessary! elif mode == 'color_to_black': saturation = 1 - saturation elif mode == 'white_to_color': @@ -132,7 +119,7 @@ class DirectionalColormap(mpl.colors.LinearSegmentedColormap): saturation = 2 - 2*saturation else: raise Exception('Invalid color wheel mode!') - saturation *= (r <= 256) # TODO: [r<=256] + saturation *= np.where(r <= 256, 1, 0) # Cut out the wheel! rgb = cls.rgb_from_colorind_and_saturation(colorind, saturation) color_wheel = Image.fromarray(rgb) # Plot the color wheel: @@ -142,21 +129,89 @@ class DirectionalColormap(mpl.colors.LinearSegmentedColormap): plt.tick_params(axis='both', which='both', labelleft='off', labelbottom='off', left='off', right='off', top='off', bottom='off') - @classmethod # TODO: Docstrings! + @classmethod def rgb_from_colorind_and_saturation(cls, colorind, saturation): - c, s = colorind, saturation + '''Construct a rgb tuple from a colorindex and a saturation value. + + Parameters + ---------- + colorind : float, [0, 1) + Colorindex specifying the directional color according to the CDICT colormap. + The colormap is periodic so that a value of 1 is equivalent to 0 again. + saturation : [0, 2]float, optional + Saturation value for the color. The lower hemisphere uses values from 0 to 1 in a + traditional sense of saturation with no saturation for directions pointing down (black) + and full saturation in plane (full colors). Higher values (between 1 and 2) add the + inverse colormap described in CDICT_INV to gradually increase the complementary colors + so that arrows pointing up appear white. + Azimuthal angle of the desired direction to encode (in rad). Default: pi/2 (in-plane). + + Returns + ------- + rgb : tuple (N=3) + rgb tuple with the encoded direction color. + + Notes + ----- + Also works with numpy arrays as input! Always returns array of shape (..., 3)! + + ''' + cls._log.debug('Calling rgb_from_colorind_and_saturation') + c, s = np.ravel(colorind), np.ravel(saturation) rgb_norm = (np.minimum(s, np.ones_like(s)).T * cls.HOLO_CMAP(c)[..., :3].T).T rgb_invs = (np.maximum(s-1, np.zeros_like(s)).T * cls.HOLO_CMAP_INV(c)[..., :3].T).T return (255.999 * (rgb_norm + rgb_invs)).astype(np.uint8) @classmethod def rgb_from_angles(cls, phi, theta=np.pi/2): + '''Construct a rgb tuple from two angles representing a 3D direction. + + Parameters + ---------- + phi : float + Polar angle of the desired direction to encode (in rad). + theta : float, optional + Azimuthal angle of the desired direction to encode (in rad). Default: pi/2 (in-plane). + + Returns + ------- + rgb : tuple (N=3) + rgb tuple with the encoded direction color. + + Notes + ----- + Also works with numpy arrays as input! + + ''' + cls._log.debug('Calling rgb_from_angles') colorind = (1 + phi/np.pi) / 2 - saturation = 2 * (1 - theta/np.pi) # goes from 0 to 2 # TODO: explain! + saturation = 2 * (1 - theta/np.pi) # goes from 0 to 2! return cls.rgb_from_colorind_and_saturation(colorind, saturation) @classmethod def rgb_from_direction(cls, x, y, z): + '''Construct a rgb tuple from three coordinates representing a 3D direction. + + Parameters + ---------- + x : float + x-coordinate of the desired direction to encode. + y : float + y-coordinate of the desired direction to encode. + z : float + z-coordinate of the desired direction to encode. + + Returns + ------- + rgb : tuple (N=3) + rgb tuple with the encoded direction color. + + Notes + ----- + Also works with numpy arrays as input! + + ''' + cls._log.debug('Calling rgb_from_direction') phi = np.arctan2(y, x) r = np.sqrt(x**2 + y**2 + z**2) theta = np.arccos(z / (r+1E-30)) diff --git a/pyramid/config.py b/pyramid/config.py index 32122b8..3b49a4c 100644 --- a/pyramid/config.py +++ b/pyramid/config.py @@ -4,6 +4,7 @@ # """Config file for the pyramid package.""" + import os diff --git a/pyramid/costfunction.py b/pyramid/costfunction.py index 03ddcde..e60f50a 100644 --- a/pyramid/costfunction.py +++ b/pyramid/costfunction.py @@ -17,6 +17,7 @@ __all__ = ['Costfunction'] class Costfunction(object): + '''Class for calculating the cost of a 3D magnetic distributions in relation to 2D phase maps. Represents a strategy for the calculation of the `cost` of a 3D magnetic distribution in @@ -55,13 +56,12 @@ class Costfunction(object): if self.regularisator is None: self.regularisator = NoneRegularisator() # Extract important information: - data_set = fwd_model.data_set - self.y = data_set.phase_vec - self.n = fwd_model.n - self.m = fwd_model.m - if data_set.Se_inv is None: - data_set.set_Se_inv_diag_with_conf() - self.Se_inv = data_set.Se_inv + self.y = self.fwd_model.data_set.phase_vec + self.n = self.fwd_model.n + self.m = self.fwd_model.m + if self.fwd_model.data_set.Se_inv is None: + self.fwd_model.data_set.set_Se_inv_diag_with_conf() + self.Se_inv = self.fwd_model.data_set.Se_inv self._log.debug('Created '+str(self)) def __repr__(self): diff --git a/pyramid/dataset.py b/pyramid/dataset.py index a31802c..4262212 100644 --- a/pyramid/dataset.py +++ b/pyramid/dataset.py @@ -8,9 +8,7 @@ and additional data like corresponding projectors.""" import numpy as np from numbers import Number - from scipy import sparse - import matplotlib.pyplot as plt from pyramid.phasemap import PhaseMap @@ -265,7 +263,7 @@ class DataSet(object): ''' self._log.debug('Calling display_mask') if self.mask is not None: - from mayavi import mlab + from mayavi import mlab # TODO: Supress annoying warning from traits! zz, yy, xx = np.indices(self.dim) ad = ar_dens zz = zz[::ad, ::ad, ::ad].flatten() @@ -358,7 +356,31 @@ class DataSet(object): phase_maps = self.create_phase_maps(mag_data) else: phase_maps = self.phase_maps - [phase_map.display_combined('{} ({})'.format(title, self.projectors[i].get_info()), - cmap, limit, norm, gain, interpolation, grad_encode) - for (i, phase_map) in enumerate(phase_maps)] + for (i, phase_map) in enumerate(phase_maps): + phase_map.display_combined('{} ({})'.format(title, self.projectors[i].get_info()), + cmap, limit, norm, gain, interpolation, grad_encode) plt.show() + + +# TODO: Multiprocessing! ########################################################################## +# TODO: Use proxy objects? (https://docs.python.org/2/library/multiprocessing.html#proxy-objects) +# class DistributedDataSet(DataSet): +# +# @property +# def count(self): +# return np.sum([len(data_set.projectors) for data_set in self.data_sets]) +# +# def __init__(self, a, dim, b_0=1, mask=None, Se_inv=None): +# # TODO: get number of processes! +# self.nprocs = 4 +# self.data_sets = [] +# for proc_ind in range(self.nprocs): +# # TODO: Create processes and let DataSet live there! +# self.data_sets.append(DataSet(a, dim, b_0, mask, Se_inv)) +# +# def __get_item__(self, key): +# return self.data_sets[key] +# +# def append(self, phase_map, projector): +# self.data_sets[self.count % self.nprocs].append(phase_map, projector) +################################################################################################### diff --git a/pyramid/diagnostics.py b/pyramid/diagnostics.py index 5930052..7aa2b01 100644 --- a/pyramid/diagnostics.py +++ b/pyramid/diagnostics.py @@ -10,7 +10,6 @@ import numpy as np import matplotlib.pyplot as plt import jutil - from pyramid import fft from pyramid.magdata import MagData from pyramid.phasemap import PhaseMap @@ -199,6 +198,7 @@ class Diagnostics(object): x = mag_x.sum(axis=(0, 1)) y = mag_y.sum(axis=(0, 2)) z = mag_z.sum(axis=(1, 2)) + # Plot helpful stuff: plt.figure() plt.axhline(y=0, ls='-', color='k') plt.axhline(y=1, ls='-', color='k') diff --git a/pyramid/fft.py b/pyramid/fft.py index f65df71..d7d10f2 100644 --- a/pyramid/fft.py +++ b/pyramid/fft.py @@ -16,9 +16,10 @@ import numpy as np import cPickle as pickle import os +from pyramid.config import NTHREADS + import logging -from pyramid.config import NTHREADS # pyFFTW depends on this try: diff --git a/pyramid/forwardmodel.py b/pyramid/forwardmodel.py index 24be8ad..da4b139 100644 --- a/pyramid/forwardmodel.py +++ b/pyramid/forwardmodel.py @@ -9,6 +9,7 @@ threedimensional magnetization distribution onto a two-dimensional phase map.""" import numpy as np from pyramid.magdata import MagData +from pyramid.ramp import Ramp import logging @@ -21,22 +22,20 @@ class ForwardModel(object): '''Class for mapping 3D magnetic distributions to 2D phase maps. Represents a strategy for the mapping of a 3D magnetic distribution to two-dimensional - phase maps. Can handle a list of `projectors` of :class:`~.Projector` objects, which describe - different projection angles, so many phase_maps can be created from one magnetic distribution. - All required data should be given in a :class:`~DataSet` object. + phase maps. A :class:`~.DataSet` object is given which is used as input for the model + (projectors, phase_mappers, etc.). A `ramp_order` can be specified to add polynomial ramps + to the constructed phase maps (which can also be reconstructed!). A :class:`~.Ramp` class + object will be constructed accordingly, which also holds all info about the ramps after a + reconstruction. Attributes ---------- data_set: :class:`~dataset.DataSet` :class:`~dataset.DataSet` object, which stores all required information calculation. - projectors : list of :class:`~.Projector` - A list of all :class:`~.Projector` objects representing the projection directions. - kernel : :class:`~.Kernel` - A kernel which describes the phasemapping of the 2D projected magnetization distribution. - a : float - The grid spacing in nm. - dim : tuple (N=3) - Dimensions of the 3D magnetic distribution. + ramp_order : int or None (default) + Polynomial order of the additional phase ramp which will be added to the phase maps. + All ramp parameters have to be at the end of the input vector and are split automatically. + Default is None (no ramps are added). m: int Size of the image space. Number of pixels of the 2-dimensional projected grid. n: int @@ -46,22 +45,19 @@ class ForwardModel(object): _log = logging.getLogger(__name__+'.ForwardModel') - def __init__(self, data_set, fit_ramps=False, fit_offsets=False): + def __init__(self, data_set, ramp_order=None): self._log.debug('Calling __init__') self.data_set = data_set - if fit_ramps: # The ramps are not fitted without the offsets! - # TODO: fit über String -> eine Flag! - # TODO: immer mit self! - fit_offsets = True - self.fit_ramps = fit_ramps - self.fit_offsets = fit_offsets - self.phase_mappers = data_set.phase_mappers - self.m = data_set.m - self.n = data_set.n + fit_offsets * data_set.count + fit_ramps * 2 * data_set.count - # TODO: bools nicht als integer verwenden! + self.ramp_order = ramp_order + self.phase_mappers = self.data_set.phase_mappers + self.ramp = Ramp(self.data_set, self.ramp_order) + self.m = self.data_set.m + self.n = self.data_set.n + if self.ramp.n is not None: # Additional parameters have to be fitted! + self.n += self.ramp.n self.shape = (self.m, self.n) self.hook_points = data_set.hook_points - self.mag_data = MagData(data_set.a, np.zeros((3,)+data_set.dim)) + self.mag_data = MagData(self.data_set.a, np.zeros((3,)+self.data_set.dim)) self._log.debug('Creating '+str(self)) # TODO: Multiprocessing! ########################################################################## # nprocs = 4 @@ -89,27 +85,22 @@ class ForwardModel(object): self._log.debug('Calling __str__') return 'ForwardModel(data_set=%s)' % (self.data_set) -# TODO: offset und ramp HIER handeln! - def __call__(self, x): - count = self.data_set.count - offsets = [None] * count - ramps = [None] * count - if self.fit_ramps: - x, offsets, u_ramps, v_ramps = np.split(x, [-3*count, -2*count, -count]) - ramps = zip(u_ramps, v_ramps) - elif self.fit_offsets: - x, offsets = np.split(x, [-count]) + # Extract ramp parameters if necessary (x will be shortened!): + x = self.ramp.extract_ramp_params(x) + # Reset mag_data and fill with vector: self.mag_data.magnitude[...] = 0 self.mag_data.set_vector(x, self.data_set.mask) + # Simulate all phase maps and create result vector: result = np.zeros(self.m) hp = self.hook_points for i, projector in enumerate(self.data_set.projectors): mapper = self.phase_mappers[projector.dim_uv] - phase_map = mapper(projector(self.mag_data), offsets[i], ramps[i]) + phase_map = mapper(projector(self.mag_data)) + phase_map += self.ramp(i) # add ramp! result[hp[i]:hp[i+1]] = phase_map.phase_vec return np.reshape(result, -1) -################################################################################################### +# TODO: Multiprocessing! ########################################################################## # nprocs = 4 # # Set up processes: # for i, projector in enumerate(self.data_set.projectors): @@ -135,7 +126,8 @@ class ForwardModel(object): implemented for the case that in the future nonlinear problems have to be solved. vector : :class:`~numpy.ndarray` (N=1) Vectorized form of the 3D magnetization distribution. First the `x`, then the `y` and - lastly the `z` components are listed. + lastly the `z` components are listed. Ramp parameters are also added at the end if + necessary. Returns ------- @@ -144,22 +136,19 @@ class ForwardModel(object): `vector`. ''' - count = self.data_set.count - offsets = [None] * count - ramps = [None] * count - if self.fit_ramps: - vector, offsets, u_ramps, v_ramps = np.split(vector, [-3*count, -2*count, -count]) - ramps = zip(u_ramps, v_ramps) - elif self.fit_offsets: - vector, offsets = np.split(vector, [-count]) + # Extract ramp parameters if necessary (vector will be shortened!): + vector = self.ramp.extract_ramp_params(vector) + # Reset mag_data and fill with vector: self.mag_data.magnitude[...] = 0 self.mag_data.set_vector(vector, self.data_set.mask) + # Simulate all phase maps and create result vector: result = np.zeros(self.m) hp = self.hook_points for i, projector in enumerate(self.data_set.projectors): mag_vec = self.mag_data.mag_vec mapper = self.phase_mappers[projector.dim_uv] - res = mapper.jac_dot(projector.jac_dot(mag_vec), offsets[i], ramps[i]) + res = mapper.jac_dot(projector.jac_dot(mag_vec)) + res += self.ramp.jac_dot(i) # add ramp! result[hp[i]:hp[i+1]] = res return result @@ -182,33 +171,27 @@ class ForwardModel(object): ------- result_vector : :class:`~numpy.ndarray` (N=1) Product of the transposed Jacobi matrix (which is not explicitely calculated) with - the input `vector`. + the input `vector`. If necessary, transposed ramp parameters are concatenated. ''' - offsets = [] - u_ramps = [] - v_ramps = [] proj_T_result = np.zeros(3*np.prod(self.data_set.dim)) hp = self.hook_points for i, projector in enumerate(self.data_set.projectors): - vec = vector[hp[i]:hp[i+1]] + sub_vec = vector[hp[i]:hp[i+1]] mapper = self.phase_mappers[projector.dim_uv] - map_T_result = mapper.jac_T_dot(vec, self.fit_ramps, self.fit_offsets) - if self.fit_ramps: # Extract offset and ramps (transposed): - map_T_result, add_params = np.split(map_T_result, [-3]) - offsets.append(add_params[0]) - u_ramps.append(add_params[1]) - v_ramps.append(add_params[2]) - elif self.fit_offsets: # Extract offset (transposed): - map_T_result, offset = np.split(map_T_result, [-1]) - offsets.append(offset) - proj_T_result += projector.jac_T_dot(map_T_result) + proj_T_result += projector.jac_T_dot(mapper.jac_T_dot(sub_vec)) self.mag_data.mag_vec = proj_T_result result = self.mag_data.get_vector(self.data_set.mask) - if self.fit_ramps: - return np.concatenate((result, np.reshape(offsets, -1), - np.reshape(u_ramps, -1), np.reshape(v_ramps, -1))) - elif self.fit_offsets: - return np.concatenate((result, np.reshape(offsets, -1))) - else: - return result + ramp_params = self.ramp.jac_T_dot(vector) # calculate ramp_params separately! + return np.concatenate((result, ramp_params)) + +# TODO: Multiprocessing! ########################################################################## +#class DistributedForwardModel(ForwardModel): +# +# def __init__(self, distributed_data_set, ramp_order=None): +# self.nprocs = distributed_data_set.nprocs +# self.fwd_models = [] +# for proc_ind in range(self.nprocs): +# data_set = distributed_data_set[proc_ind] +# self.fwd_models.append(ForwardModel(data_set)) +################################################################################################### diff --git a/pyramid/kernel.py b/pyramid/kernel.py index 724514f..317ce38 100644 --- a/pyramid/kernel.py +++ b/pyramid/kernel.py @@ -123,7 +123,7 @@ class Kernel(object): def _get_elementary_phase(self, geometry, n, m, a): self._log.debug('Calling _get_elementary_phase') if geometry == 'disc': - in_or_out = np.logical_not(np.logical_and(n == 0, m == 0)) + in_or_out = ~ np.logical_and(n == 0, m == 0) return m / (n**2 + m**2 + 1E-30) * in_or_out elif geometry == 'slab': def F_a(n, m): diff --git a/pyramid/magcreator.py b/pyramid/magcreator.py index a777709..e42d097 100644 --- a/pyramid/magcreator.py +++ b/pyramid/magcreator.py @@ -21,7 +21,6 @@ from __future__ import division import numpy as np from numpy import pi - import abc import logging @@ -72,14 +71,7 @@ class Shapes(object): xx_shape = np.where(abs(xx-center[2]) <= width[2]/2, True, False) yy_shape = np.where(abs(yy-center[1]) <= width[1]/2, True, False) zz_shape = np.where(abs(zz-center[0]) <= width[0]/2, True, False) - mag_shape = np.logical_and.reduce((xx_shape, yy_shape, zz_shape)) -# mag_shape = np.array([[[abs(x - center[2]) <= width[2] / 2 -# and abs(y - center[1]) <= width[1] / 2 -# and abs(z - center[0]) <= width[0] / 2 -# for x in range(dim[2])] -# for y in range(dim[1])] -# for z in range(dim[0])]) - return mag_shape + return np.logical_and.reduce((xx_shape, yy_shape, zz_shape)) @classmethod def disc(cls, dim, center, radius, height, axis='z'): @@ -110,25 +102,18 @@ class Shapes(object): assert radius > 0 and np.shape(radius) == (), 'Radius has to be a positive scalar value!' assert height > 0 and np.shape(height) == (), 'Height has to be a positive scalar value!' assert axis in {'z', 'y', 'x'}, 'Axis has to be x, y or z (as a string)!' + zz, yy, xx = np.indices(dim) + 0.5 + xx -= center[2] + yy -= center[1] + zz -= center[0] if axis == 'z': - mag_shape = np.array([[[np.hypot(x - center[2], y - center[1]) <= radius - and abs(z - center[0]) <= height / 2 - for x in range(dim[2])] - for y in range(dim[1])] - for z in range(dim[0])]) + uu, vv, ww = xx, yy, zz elif axis == 'y': - mag_shape = np.array([[[np.hypot(x - center[2], z - center[0]) <= radius - and abs(y - center[1]) <= height / 2 - for x in range(dim[2])] - for y in range(dim[1])] - for z in range(dim[0])]) + uu, vv, ww = zz, xx, yy elif axis == 'x': - mag_shape = np.array([[[np.hypot(y - center[1], z - center[0]) <= radius - and abs(x - center[2]) <= height / 2 - for x in range(dim[2])] - for y in range(dim[1])] - for z in range(dim[0])]) - return mag_shape + uu, vv, ww = yy, zz, xx + return np.logical_and(np.where(np.hypot(uu, vv) <= radius, True, False), + np.where(abs(ww) <= height/2, True, False)) @classmethod def ellipse(cls, dim, center, width, height, axis='z'): @@ -159,28 +144,19 @@ class Shapes(object): assert np.shape(width) == (2,), 'Parameter width has to be a a tuple of length 2!' assert height > 0 and np.shape(height) == (), 'Height has to be a positive scalar value!' assert axis in {'z', 'y', 'x'}, 'Axis has to be x, y or z (as a string)!' + zz, yy, xx = np.indices(dim) + 0.5 + xx -= center[2] + yy -= center[1] + zz -= center[0] if axis == 'z': - mag_shape = np.array([[[np.hypot((x-center[2])/(width[1]/2.), - (y-center[1])/(width[0]/2.)) <= 1 - and abs(z - center[0]) <= height / 2 - for x in range(dim[2])] - for y in range(dim[1])] - for z in range(dim[0])]) + uu, vv, ww = xx, yy, zz elif axis == 'y': - mag_shape = np.array([[[np.hypot((x-center[2])/(width[1]/2.), - (z-center[0])/(width[0]/2.)) <= 1 - and abs(y-center[1]) <= height / 2 - for x in range(dim[2])] - for y in range(dim[1])] - for z in range(dim[0])]) + uu, vv, ww = xx, zz, yy elif axis == 'x': - mag_shape = np.array([[[np.hypot((y-center[1])/(width[1]/2.), - (z-center[0])/(width[0]/2.)) <= 1 - and abs(x - center[2]) <= height / 2 - for x in range(dim[2])] - for y in range(dim[1])] - for z in range(dim[0])]) - return mag_shape + uu, vv, ww = yy, zz, xx + distance = np.hypot(uu/(width[1]/2), vv/(width[0]/2)) + return np.logical_and(np.where(distance <= 1, True, False), + np.where(abs(ww) <= height/2, True, False)) @classmethod def sphere(cls, dim, center, radius): @@ -205,13 +181,9 @@ class Shapes(object): assert np.shape(dim) == (3,), 'Parameter dim has to be a a tuple of length 3!' assert np.shape(center) == (3,), 'Parameter center has to be a a tuple of length 3!' assert radius > 0 and np.shape(radius) == (), 'Radius has to be a positive scalar value!' - mag_shape = np.array([[[np.sqrt((x-center[2])**2 - + (y-center[1])**2 - + (z-center[0])**2) <= radius - for x in range(dim[2])] - for y in range(dim[1])] - for z in range(dim[0])]) - return mag_shape + zz, yy, xx = np.indices(dim) + 0.5 + distance = np.sqrt((xx-center[2])**2 + (yy-center[1])**2 + (zz-center[0])**2) + return np.where(distance <= radius, True, False) @classmethod def ellipsoid(cls, dim, center, width): @@ -236,13 +208,11 @@ class Shapes(object): assert np.shape(dim) == (3,), 'Parameter dim has to be a a tuple of length 3!' assert np.shape(center) == (3,), 'Parameter center has to be a a tuple of length 3!' assert np.shape(width) == (3,), 'Parameter width has to be a a tuple of length 3!' - mag_shape = np.array([[[(x-center[2])**2/(width[2]/2)**2 - + (y-center[1])**2/(width[1]/2)**2 - + (z-center[0])**2/(width[0]/2)**2 <= 1 - for x in range(dim[2])] - for y in range(dim[1])] - for z in range(dim[0])]) - return mag_shape + zz, yy, xx = np.indices(dim) + 0.5 + distance = np.sqrt(((xx-center[2]) / (width[2]/2))**2 + + ((yy-center[1]) / (width[1]/2))**2 + + ((zz-center[0]) / (width[0]/2))**2) + return np.where(distance <= 1, True, False) @classmethod def filament(cls, dim, pos, axis='y'): @@ -350,12 +320,19 @@ def create_mag_dist_vortex(mag_shape, center=None, axis='z', magnitude=1): the vortex direction (left-handed instead of right-handed). axis : {'z', 'y', 'x'}, optional The orientation of the vortex axis. The default is 'z'. + Returns ------- magnitude : tuple (N=3) of :class:`~numpy.ndarray` (N=3) The magnetic distribution as a tuple of the 3 components in `x`-, `y`- and `z`-direction on the 3-dimensional grid. + Notes + ----- + To avoid singularities, the vortex center should lie between the pixel centers (which + reside at coordinates with _.5 at the end), i.e. integer values should be used as center + coordinates (e.g. coordinate 1 lies between the first and the second pixel). + ''' _log.debug('Calling create_mag_dist_vortex') dim = np.shape(mag_shape) @@ -364,12 +341,12 @@ def create_mag_dist_vortex(mag_shape, center=None, axis='z', magnitude=1): assert center is None or len(center) in {2, 3}, \ 'Vortex center has to be defined in 3D or 2D or not at all!' if center is None: - center = (int(dim[1]/2)-0.5, int(dim[2]/2)-0.5) # center has to be between (!) two pixels + center = (dim[1]/2, dim[2]/2) if axis == 'z': if len(center) == 3: # if a 3D-center is given, just take the x and y components center = (center[1], center[2]) - u = np.linspace(-center[1], dim[2]-1-center[1], dim[2]) - v = np.linspace(-center[0], dim[1]-1-center[0], dim[1]) + u = np.linspace(-center[1], dim[2]-1-center[1], dim[2]) + 0.5 # pixel center! + v = np.linspace(-center[0], dim[1]-1-center[0], dim[1]) + 0.5 # pixel center! uu, vv = np.meshgrid(u, v) phi = np.expand_dims(np.arctan2(vv, uu)-pi/2, axis=0) phi = np.tile(phi, (dim[0], 1, 1)) @@ -379,8 +356,8 @@ def create_mag_dist_vortex(mag_shape, center=None, axis='z', magnitude=1): elif axis == 'y': if len(center) == 3: # if a 3D-center is given, just take the x and z components center = (center[0], center[2]) - u = np.linspace(-center[1], dim[2]-1-center[1], dim[2]) - v = np.linspace(-center[0], dim[0]-1-center[0], dim[0]) + u = np.linspace(-center[1], dim[2]-1-center[1], dim[2]) + 0.5 # pixel center! + v = np.linspace(-center[0], dim[0]-1-center[0], dim[0]) + 0.5 # pixel center! uu, vv = np.meshgrid(u, v) phi = np.expand_dims(np.arctan2(vv, uu)-pi/2, axis=1) phi = np.tile(phi, (1, dim[1], 1)) @@ -390,8 +367,8 @@ def create_mag_dist_vortex(mag_shape, center=None, axis='z', magnitude=1): elif axis == 'x': if len(center) == 3: # if a 3D-center is given, just take the z and y components center = (center[0], center[1]) - u = np.linspace(-center[1], dim[1]-1-center[1], dim[1]) - v = np.linspace(-center[0], dim[0]-1-center[0], dim[0]) + u = np.linspace(-center[1], dim[1]-1-center[1], dim[1]) + 0.5 # pixel center! + v = np.linspace(-center[0], dim[0]-1-center[0], dim[0]) + 0.5 # pixel center! uu, vv = np.meshgrid(u, v) phi = np.expand_dims(np.arctan2(vv, uu)-pi/2, axis=2) phi = np.tile(phi, (1, 1, dim[2])) diff --git a/pyramid/magdata.py b/pyramid/magdata.py index 04edc61..88473d8 100644 --- a/pyramid/magdata.py +++ b/pyramid/magdata.py @@ -8,12 +8,11 @@ from __future__ import division import os - import numpy as np from numpy.linalg import norm from scipy.ndimage.interpolation import zoom - -import matplotlib as mpl +from numbers import Number +import netCDF4 import matplotlib.pyplot as plt import matplotlib.cm as cmx from matplotlib.ticker import MaxNLocator @@ -21,10 +20,6 @@ from matplotlib.ticker import MaxNLocator from pyramid import fft from pyramid.colormap import DirectionalColormap -from numbers import Number - -import netCDF4 - import logging @@ -168,45 +163,6 @@ class MagData(object): self._log.debug('Calling __imul__') return self.__mul__(other) -# @classmethod -# def _create_directional_colormap(cls, levels=15, N=256): -# cls._log.debug('Calling __create_directional_colormap') -# r, g, b = [], [], [] # RGB lists -# # Create saturation lists to encode up and down directions via black and white colors. -# # example for 5 levels from black (down) to color (in-plane) to white: -# # pos_sat: [ 0. 0.5 1. 1. 1. ] -# # neg_sat: [ 0. 0. 0. 0.5 1. ] -# center = levels//2 -# pos_sat = np.ones(levels) -# pos_sat[0:center] = [i/center for i in range(center)] -# neg_sat = np.zeros(levels) -# neg_sat[center+1:] = [(i+1)/center for i in range(center)] -# -# # Iterate over all levels (the center level represents in-plane moments!): -# for i in range(levels): -# inter_points = np.linspace(i/levels, (i+1)/levels, 5) # interval points, current level -# # Red: -# r.append((inter_points[0], 0, neg_sat[i])) -# r.append((inter_points[1], pos_sat[i], pos_sat[i])) -# r.append((inter_points[2], pos_sat[i], pos_sat[i])) -# r.append((inter_points[3], neg_sat[i], neg_sat[i])) -# r.append((inter_points[4], neg_sat[i], 0)) -# # Green: -# g.append((inter_points[0], 0, neg_sat[i])) -# g.append((inter_points[1], neg_sat[i], neg_sat[i])) -# g.append((inter_points[2], pos_sat[i], pos_sat[i])) -# g.append((inter_points[3], pos_sat[i], pos_sat[i])) -# g.append((inter_points[4], neg_sat[i], 0)) -# # Blue -# b.append((inter_points[0], 0, pos_sat[i])) -# b.append((inter_points[1], neg_sat[i], neg_sat[i])) -# b.append((inter_points[2], neg_sat[i], neg_sat[i])) -# b.append((inter_points[3], neg_sat[i], neg_sat[i])) -# b.append((inter_points[4], pos_sat[i], 0)) -# # Combine to color dictionary and return: -# cdict = {'red': r, 'green': g, 'blue': b} -# return mpl.colors.LinearSegmentedColormap('directional_colormap', cdict, N) - def copy(self): '''Returns a copy of the :class:`~.MagData` object @@ -695,6 +651,8 @@ class MagData(object): scale: float, optional Additional multiplicative factor scaling the arrow length. Default is 1 (no further scaling). + show_mask: boolean + Default is True. Shows the outlines of the mask slice if available. Returns ------- @@ -702,7 +660,6 @@ class MagData(object): The axis on which the graph is plotted. ''' - # TODO: include mask if available! self._log.debug('Calling quiver_plot') assert proj_axis == 'z' or proj_axis == 'y' or proj_axis == 'x', \ 'Axis has to be x, y or z (as string).' @@ -832,8 +789,7 @@ class MagData(object): ''' self._log.debug('Calling quiver_plot3D') - from mayavi import mlab - import warnings + from mayavi import mlab # TODO: Supress annoying warning from traits! a = self.a dim = self.dim if limit is None: @@ -849,6 +805,7 @@ class MagData(object): z_mag = self.magnitude[2][::ad, ::ad, ::ad].flatten() # Plot them as vectors: mlab.figure(size=(750, 700)) + import warnings with warnings.catch_warnings(record=True) as w: # Catch annoying warning plot = mlab.quiver3d(xx, yy, zz, x_mag, y_mag, z_mag, mode=mode, colormap=cmap) if len(w) != 0: # If a warning occurs make sure it is (only) the expected one! @@ -858,19 +815,8 @@ class MagData(object): if coloring == 'angle': # Encodes the full angle via colorwheel and saturation self._log.debug('Encoding full 3D angles') from tvtk.api import tvtk - colorinds = DirectionalColormap.rgb_from_direction(x_mag, y_mag, z_mag) - colors = map(tuple, colorinds) # convert to list of tuples! -# phis = (1 - np.arctan2(y_mag, x_mag)/np.pi) / 2 # in-plane angle (rescaled: 0 to 1) -# thetas = np.arctan2(np.hypot(y_mag, x_mag), z_mag)/np.pi # vert. angle (also rescaled) -# levels = 31 # number of shades for up/down arrows (white is up, black is down) -# N = 2048 # Overall number of colors for the colormap (only N/levels per level!) -# cmap = DirectionalColormap(levels, N)#self._create_directional_colormap(levels, N) -# colors = [] -# for i in range(len(x_mag)): -# level = np.floor((1-thetas[i]) * levels) -# lookup_value = (level + phis[i]) / levels -# rgba = tuple((np.asarray(cmap(lookup_value)) * 255.99999).astype(np.int)) -# colors.append(rgba) + rgb = DirectionalColormap.rgb_from_direction(x_mag, y_mag, z_mag) + colors = map(tuple, rgb) # convert to list of tuples! sc = tvtk.UnsignedCharArray() # Used to hold the colors sc.from_array(colors) plot.mlab_source.dataset.point_data.scalars = sc diff --git a/pyramid/phasemap.py b/pyramid/phasemap.py index 033cf43..4547745 100644 --- a/pyramid/phasemap.py +++ b/pyramid/phasemap.py @@ -6,21 +6,17 @@ import os - import numpy as np from scipy.ndimage.interpolation import zoom - -from pyramid.colormap import DirectionalColormap - +from numbers import Number +import netCDF4 +from PIL import Image import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.ticker import MaxNLocator, FuncFormatter -from PIL import Image -from numbers import Number - -import netCDF4 +from pyramid.colormap import DirectionalColormap import logging @@ -219,7 +215,6 @@ class PhaseMap(object): else: # other is a Number self._log.debug('Adding an offset') return PhaseMap(self.a, self.phase+other, self.mask, self.confidence, self.unit) - # TODO: Add fitting numpy array! (useful for ramps)! def __sub__(self, other): # self - other self._log.debug('Calling __sub__') @@ -256,12 +251,6 @@ class PhaseMap(object): self._log.debug('Calling __imul__') return self.__mul__(other) - def add_ramp(self, offset=0, ramp=(0, 0)): - # TODO: Docstring! - self._log.debug('Calling add_ramp') - vv, uu = self.a * np.indices(self.dim_uv) - self.phase += offset + ramp[0]*uu + ramp[1]*vv - def copy(self): '''Returns a copy of the :class:`~.PhaseMap` object @@ -691,45 +680,13 @@ class PhaseMap(object): if title is None: title = 'Contour Map (gain: %.2g)' % gain # Calculate the holography image intensity: -# img_holo = (1 + np.cos(gain * self.phase)) / 2 holo = (1 + np.cos(gain * self.phase)) / 2 # Calculate the phase gradients, expressed by magnitude and angle: phase_grad_x, phase_grad_y = np.gradient(self.phase, self.a, self.a) -# plt.figure() -# plt.imshow(phase_grad_x) -# plt.figure() -# plt.imshow(phase_grad_y) angles = (1 - np.arctan2(phase_grad_y, phase_grad_x)/np.pi) / 2 phase_grad_amp = np.hypot(phase_grad_y, phase_grad_x) -# phase_angle = (1 + np.arctan2(phase_grad_y, phase_grad_x)/np.pi) / 2 -# phase_magnitude = np.hypot(phase_grad_x, phase_grad_y) - # Calculate the color saturation: -# saturation = np.sin(phase_magnitude/(phase_magnitude.max()+1E-30) * np.pi / 2) -# phase_saturation = np.dstack((saturation,)*4) saturations = np.sin(phase_grad_amp/(phase_grad_amp.max()+1E-30)*np.pi/2) # betw. 0 and 1 -# # Color code the angle and create the holography image: -# if grad_encode == 'dark': -# self._log.debug('gradient encoding: dark') -# rgba = self.HOLO_CMAP(phase_angle) -# rgb = (255.999 * img_holo.T * saturation.T * rgba[:, :, :3].T).T.astype(np.uint8) -# elif grad_encode == 'bright_old': -# self._log.debug('gradient encoding: bright') -# rgba = self.HOLO_CMAP(phase_angle)+(1-phase_saturation)*self.HOLO_CMAP_INV(phase_angle) -# rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) -# elif grad_encode == 'bright': -# self._log.debug('gradient encoding: bright') -# rgba = self.HOLO_CMAP(phase_angle)+(1-phase_saturation)*self.HOLO_CMAP_INV(phase_angle) -# rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) -# elif grad_encode == 'color': -# self._log.debug('gradient encoding: color') -# rgba = self.HOLO_CMAP(phase_angle) -# rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) -# elif grad_encode == 'none': -# self._log.debug('gradient encoding: none') -# rgba = self.HOLO_CMAP(phase_angle)+self.HOLO_CMAP_INV(phase_angle) -# rgb = (255.999 * img_holo.T * rgba[:, :, :3].T).T.astype(np.uint8) -# else: -# raise AssertionError('Gradient encoding not recognized!') + # Calculate color encoding: if grad_encode == 'dark': pass elif grad_encode == 'bright': @@ -740,6 +697,7 @@ class PhaseMap(object): saturations = 2*np.ones_like(saturations) else: raise AssertionError('Gradient encoding not recognized!') + # Calculate colored holo image: rgb = DirectionalColormap.rgb_from_colorind_and_saturation(angles, saturations) rgb = (holo.T * rgb.T).T.astype(np.uint8) holo_image = Image.fromarray(rgb) @@ -815,34 +773,3 @@ class PhaseMap(object): self.display_phase(cmap='RdBu', limit=limit, norm=norm, axis=phase_axis) # Return the plotting axes: return phase_axis, holo_axis - -# @classmethod -# def make_color_wheel(cls): -# '''Display a color wheel to illustrate the color coding of the gradient direction. -# -# Parameters -# ---------- -# None -# -# Returns -# ------- -# None -# -# ''' -# cls._log.debug('Calling make_color_wheel') -# yy, xx = np.indices((512, 512)) - 256 -# r = np.sqrt(xx**2 + yy**2) -# # Create the wheel: -# color_wheel_magnitude = (1 - np.cos(r * pi/360)) / 2 -# color_wheel_magnitude *= 0 * (r > 256) + 1 * (r <= 256) -# color_wheel_angle = (1 - np.arctan2(xx, -yy)/pi) / 2 -# # Color code the angle and create the holography image: -# rgba = cls.HOLO_CMAP(color_wheel_angle) -# rgb = (255.999 * color_wheel_magnitude.T * rgba[:, :, :3].T).T.astype(np.uint8) -# color_wheel = Image.fromarray(rgb) -# # Plot the color wheel: -# fig = plt.figure(figsize=(4, 4)) -# axis = fig.add_subplot(1, 1, 1, aspect='equal') -# axis.imshow(color_wheel, origin='lower') -# axis.xaxis.set_major_locator(NullLocator()) -# axis.yaxis.set_major_locator(NullLocator()) diff --git a/pyramid/phasemapper.py b/pyramid/phasemapper.py index 81f5c54..a4c63d5 100644 --- a/pyramid/phasemapper.py +++ b/pyramid/phasemapper.py @@ -5,14 +5,11 @@ """This module executes several forward models to calculate the magnetic or electric phase map from a given projection of a 3-dimensional magnetic distribution (see :mod:`~pyramid.projector`). For the magnetic phase map, an approach using real space and one using Fourier space is provided. -The electrostatic contribution is calculated by using the assumption of a mean inner potential. - -""" +The electrostatic contribution is calculated by using the assumption of a mean inner potential.""" import numpy as np from numpy import pi - import abc import pyramid.numcore.phasemapper_core as nc @@ -113,7 +110,7 @@ class PhaseMapperRDFC(PhaseMapper): self._log.debug('Calling __str__') return 'PhaseMapperRDFC(kernel=%s)' % (self.kernel) - def __call__(self, mag_data, offset=None, ramp=None): + def __call__(self, mag_data): assert isinstance(mag_data, MagData), 'Only MagData objects can be mapped!' assert mag_data.a == self.kernel.a, 'Grid spacing has to match!' assert mag_data.dim[0] == 1, 'Magnetic distribution must be 2-dimensional!' @@ -121,19 +118,7 @@ class PhaseMapperRDFC(PhaseMapper): # Process input parameters: self.u_mag[self.kernel.slice_mag] = mag_data.magnitude[0, 0, ...] # u-component self.v_mag[self.kernel.slice_mag] = mag_data.magnitude[1, 0, ...] # v-component - # Handle offset: - if offset is not None: - off_phase = offset * np.ones(self.kernel.dim_uv) - else: - off_phase = 0 - # Handle ramp: - if ramp is not None: - u_ramp, v_ramp = ramp # in rad / nm - vv, uu = np.indices(self.kernel.dim_uv) * self.kernel.a - ramp_phase = u_ramp * uu + v_ramp * vv - else: - ramp_phase = 0 - return PhaseMap(mag_data.a, self._convolve() + off_phase + ramp_phase) + return PhaseMap(mag_data.a, self._convolve()) def _convolve(self): # Fourier transform the projected magnetisation: @@ -144,7 +129,7 @@ class PhaseMapperRDFC(PhaseMapper): # Return the result: return fft.irfftn(self.phase_fft)[self.kernel.slice_phase] - def jac_dot(self, vector, offset=None, ramp=None): + def jac_dot(self, vector): '''Calculate the product of the Jacobi matrix with a given `vector`. Parameters @@ -164,21 +149,9 @@ class PhaseMapperRDFC(PhaseMapper): 'vector size not compatible! vector: {}, size: {}'.format(len(vector), self.n) self.u_mag[self.kernel.slice_mag], self.v_mag[self.kernel.slice_mag] = \ np.reshape(vector, (2,)+self.kernel.dim_uv) - # Handle offset: - if offset is not None: - off_phase = offset * np.ones(self.kernel.dim_uv) - else: - off_phase = 0 - # Handle ramp: - if ramp is not None: - u_ramp, v_ramp = ramp # in rad / nm - vv, uu = np.indices(self.kernel.dim_uv) * self.kernel.a - ramp_phase = u_ramp * uu + v_ramp * vv - else: - ramp_phase = 0 - return np.ravel(self._convolve() + off_phase + ramp_phase) + return np.ravel(self._convolve()) - def jac_T_dot(self, vector, return_ramp=False, return_offset=False): + def jac_T_dot(self, vector): '''Calculate the product of the transposed Jacobi matrix with a given `vector`. Parameters @@ -202,23 +175,10 @@ class PhaseMapperRDFC(PhaseMapper): v_phase_adj_fft = mag_adj_fft * -self.kernel.v_fft u_phase_adj = fft.rfftn_adj(u_phase_adj_fft)[self.kernel.slice_phase] v_phase_adj = fft.rfftn_adj(v_phase_adj_fft)[self.kernel.slice_phase] - # TODO: offset subtract? - if return_ramp: - offset = [vector.sum()] - vv, uu = np.indices(self.kernel.dim_uv) * self.kernel.a - u_ramp = [np.sum(vector * uu.flatten())] - v_ramp = [np.sum(vector * vv.flatten())] - result = np.concatenate((-u_phase_adj.flatten(), -v_phase_adj.flatten(), - offset, u_ramp, v_ramp)) - elif return_offset: - offset = [vector.sum()] - result = np.concatenate((-u_phase_adj.flatten(), -v_phase_adj.flatten(), offset)) - else: - result = np.concatenate((-u_phase_adj.flatten(), -v_phase_adj.flatten())) + result = np.concatenate((-u_phase_adj.flatten(), -v_phase_adj.flatten())) # TODO: Why minus? return result -# TODO: ALL Docstrings with offset!!! class PhaseMapperRDRC(PhaseMapper): diff --git a/pyramid/projector.py b/pyramid/projector.py index 7438372..937fc0a 100644 --- a/pyramid/projector.py +++ b/pyramid/projector.py @@ -10,12 +10,9 @@ from __future__ import division import numpy as np from numpy import pi - -import abc - import itertools - from scipy.sparse import coo_matrix, csr_matrix +import abc from pyramid.magdata import MagData from pyramid.quaternion import Quaternion diff --git a/pyramid/quaternion.py b/pyramid/quaternion.py index 9a9a431..f23291c 100644 --- a/pyramid/quaternion.py +++ b/pyramid/quaternion.py @@ -1,4 +1,7 @@ # -*- coding: utf-8 -*- +# Copyright 2014 by Forschungszentrum Juelich GmbH +# Author: J. Caron +# """This module provides the :class:`~.Quaternion` class which can be used for rotations.""" diff --git a/pyramid/ramp.py b/pyramid/ramp.py new file mode 100644 index 0000000..c12b0a0 --- /dev/null +++ b/pyramid/ramp.py @@ -0,0 +1,190 @@ +# -*- coding: utf-8 -*- +# Copyright 2014 by Forschungszentrum Juelich GmbH +# Author: J. Caron +# +"""This module provides the :class:`~.Ramp` class which implements polynomial phase ramps.""" + + +import numpy as np + +from pyramid.phasemap import PhaseMap + + +__all__ = ['Ramp'] + + +class Ramp(object): + + '''Class representing a polynomial phase ramp. + + Sometimes additional phase ramps occur in phase maps which do not stem from a magnetization + distribution inside the FOV. This class allows the construction (and via the derivative + functions also the reconstruction) of a polynomial ramp. This class is generally constructed + within the ForwardModel and can be retrieved as its attribute if ramp information should be + accessed. + + Attributes + ---------- + data_set : :class:`~dataset.DataSet` + :class:`~dataset.DataSet` object, which stores all required information calculation. + order : int or None (default) + Polynomial order of the additional phase ramp which will be added to the phase maps. + All ramp parameters have to be at the end of the input vector and are split automatically. + Default is None (no ramps are added). + deg_of_freedom : int + Number of degrees of freedom. This is calculated to ``1 + 2 * order``. There is just one + degree of freedom for a ramp of order zero (offset), every higher order contributes two + degrees of freedom. + param_cache : :class:`numpy.ndarray` (N=2) + Parameter cache which is used to store the polynomial coefficients. Higher coefficients + (one for each degree of freedom) are saved along the first axis, values for different + images along the second axis. + n : int + Size of the input space. Coincides with the numer of entries in `param_cache` and + calculates to ``deg_of_freedom * data_set.count``. + + Notes + ----- + After a reconstruction the relevant polynomial ramp information is stored in the + `param_cache`. If a phasemap with index `i` in the DataSet should be corrected use: + + >>> phase_map -= ramp(i, dof_list) + + The optional parameter `dof_list` can be used to specify a list of degrees of freedom which + should be used for the ramp (e.g. `[0]` will just apply the offset, `[0, 1, 2]` will apply + the offset and linear ramps in both directions). + + Fitting polynoms of higher orders than `order = 1` is possible but not recommended, because + features which stem from the magnetization could be covered by the polynom, decreasing the + phase contribution of the magnetization distribution, leading to a false retrieval. + + ''' + + def __init__(self, data_set, order=None): + self.data_set = data_set + assert order is None or (isinstance(order, int) and order >= 0), \ + 'Order has to be None or a positive integer!' + self.order = order + self.deg_of_freedom = (1 + 2 * self.order) if self.order is not None else 0 + self.param_cache = np.zeros((self.deg_of_freedom, self.data_set.count)) + self.n = self.deg_of_freedom * self.data_set.count + + def __call__(self, index, dof_list=None): + if self.order is None: # Do nothing if order is None! + return 0 + else: + if dof_list is None: # if no specific list is supplied! + dof_list = range(self.deg_of_freedom) # use all available degrees of freedom + dim_uv = self.data_set.projectors[index].dim_uv + phase_ramp = np.zeros(dim_uv) + # Iterate over all degrees of freedom: + for dof in dof_list: + # Add the contribution of the current degree of freedom: + phase_ramp += self.param_cache[dof][index] * self.create_poly_mesh(dof, dim_uv) + return PhaseMap(self.data_set.a, phase_ramp, mask=np.zeros(dim_uv, dtype=np.bool)) + + def jac_dot(self, index): + '''Calculate the product of the Jacobi matrix with a given `vector`. + + Parameters + ---------- + vector : :class:`~numpy.ndarray` (N=1) + Vectorized form of the 3D magnetization distribution. First the `x`, then the `y` and + lastly the `z` components are listed. Ramp parameters are also added at the end if + necessary. + + Returns + ------- + result_vector : :class:`~numpy.ndarray` (N=1) + Product of the Jacobi matrix (which is not explicitely calculated) with the input + `vector`. Just the ramp contribution is calculated! + + ''' + if self.order is None: # Do nothing if order is None! + return 0 + else: + dim_uv = self.data_set.projectors[index].dim_uv + phase_ramp = np.zeros(dim_uv) + # Iterate over all degrees of freedom: + for dof in range(self.deg_of_freedom): + # Add the contribution of the current degree of freedom: + phase_ramp += self.param_cache[dof][index] * self.create_poly_mesh(dof, dim_uv) + return np.ravel(phase_ramp) + + def jac_T_dot(self, vector): + ''''Calculate the transposed ramp parameters from a given `vector`. + + Parameters + ---------- + vector : :class:`~numpy.ndarray` (N=1) + Vectorized form of all 2D phase maps one after another in one vector. + + Returns + ------- + result_vector : :class:`~numpy.ndarray` (N=1) + Transposed ramp parameters. + + ''' + result = [] + hp = self.data_set.hook_points + # Iterate over all degrees of freedom: + for dof in range(self.deg_of_freedom): + # Iterate over all projectors: + for i, projector in enumerate(self.data_set.projectors): + sub_vec = vector[hp[i]:hp[i+1]] + poly_mesh = self.create_poly_mesh(dof, projector.dim_uv) + # Transposed ramp parameters: summed product of the vector with the poly-mesh: + result.append(np.sum(sub_vec * np.ravel(poly_mesh))) + return result + + def create_poly_mesh(self, deg_of_freedom, dim_uv): + '''Create a polynomial mesh for the ramp calculation for a specific degree of freedom. + + Parameters + ---------- + deg_of_freedom : int + Current degree of freedom for which the mesh should be created. 0 corresponds to a + simple offset, 1 corresponds to a linear ramp in u-direction, 2 to a linear ramp in + v-direction and so on. + dim_uv : tuple (N=2) + Dimensions of the 2D mesh that should be created. + + Returns + ------- + result_mesh : :class:`~numpy.ndarray` (N=2) + Polynomial mesh that was created and can be used for further calculations. + + ''' + # Determine if u-direction (u_or_v == 1) or v-direction (u_or_v == 0)! + u_or_v = (deg_of_freedom - 1) % 2 + # Determine polynomial order: + order = (deg_of_freedom + 1) // 2 + # Return polynomial mesh: + return (np.indices(dim_uv)[u_or_v] * self.data_set.a) ** order + + def extract_ramp_params(self, x): + '''Extract the ramp parameters of an input vector and return the rest. + + Parameters + ---------- + x : :class:`~numpy.ndarray` (N=1) + Input vector which consists of the vectorised magnetization distribution and the ramp + parameters at the end which will be extracted. + + Returns + ------- + result_vector : :class:`~numpy.ndarray` (N=1) + Inpput vector without the extracted ramp parameters. + + Notes + ----- + This method should always be used before a vector `x` is processed if it is known that + ramp parameters are present so that other functions do not have to bother with them + and the :class:`.~ramp` already knows all important parameters for its own functions. + + ''' + if self.order is not None: # Do nothing if order is None! + # Split off ramp parameters and fill cache: + x, ramp_params = np.split(x, [-self.n]) + self.param_cache = ramp_params.reshape((self.deg_of_freedom, self.data_set.count)) + return x diff --git a/pyramid/reconstruction.py b/pyramid/reconstruction.py index 3d2cf4a..80271a1 100644 --- a/pyramid/reconstruction.py +++ b/pyramid/reconstruction.py @@ -48,22 +48,13 @@ def optimize_linear(costfunction, max_iter=None): _log.info('Cost before optimization: {}'.format(costfunction(np.zeros(costfunction.n)))) x_opt = jcg.conj_grad_minimize(costfunction, max_iter=max_iter).x _log.info('Cost after optimization: {}'.format(costfunction(x_opt))) - # Extract additional info if necessary: - add_info = [] - data_set = costfunction.fwd_model.data_set - count = data_set.count - if costfunction.fwd_model.fit_ramps: - x_opt, offsets, u_ramps, v_ramps = np.split(x_opt, [-3*count, -2*count, -count]) - ramps = zip(u_ramps, v_ramps) - add_info.append(offsets) - add_info.append(ramps) - elif costfunction.fwd_model.fit_offsets: - x_opt, offsets = np.split(x_opt, [-count]) - add_info.append(offsets) + # Cut ramp parameters if necessary (this also saves the final parameters in the ramp class!): + x_opt = costfunction.fwd_model.ramp.extract_ramp_params(x_opt) # Create and return fitting MagData object: + data_set = costfunction.fwd_model.data_set mag_opt = MagData(data_set.a, np.zeros((3,) + data_set.dim)) mag_opt.set_vector(x_opt, data_set.mask) - return mag_opt, add_info # TODO: Docstring + return mag_opt def optimize_nonlin(costfunction, first_guess=None): diff --git a/pyramid/regularisator.py b/pyramid/regularisator.py index 5d638ae..73cc7de 100644 --- a/pyramid/regularisator.py +++ b/pyramid/regularisator.py @@ -6,10 +6,9 @@ which adds additional constraints to a costfunction to minimize.""" -import abc - import numpy as np from scipy import sparse +import abc import jutil.norms as jnorm import jutil.diff as jdiff @@ -27,46 +26,50 @@ class Regularisator(object): Represents a certain constraint for the 3D magnetization distribution whose cost is to minimize in addition to the derivation from the 2D phase maps. Important is the used `norm` and the regularisation parameter `lam` (lambda) which determines the weighting between the two cost - parts (measurements and regularisation). + parts (measurements and regularisation). Additional parameters at the end of the input + vector, which are not relevant for the regularisation can be discarded by specifying the + number in `add_params`. Attributes ---------- - norm: :class:`~jutil.norm.WeightedNorm` + norm : :class:`~jutil.norm.WeightedNorm` Norm, which is used to determine the cost of the regularisation term. - lam: float + lam : float Regularisation parameter determining the weighting between measurements and regularisation. + add_params : int + Number of additional parameters which are not used in the regularisation. Used to cut + the input vector into the appropriate size. - ''' # TODO: ALL dostrings with add_params of input! + ''' __metaclass__ = abc.ABCMeta _log = logging.getLogger(__name__+'.Regularisator') @abc.abstractmethod - def __init__(self, norm, lam, add_params=None): - # TODO: Cut off additional parameters at the end (offset and stuff)!!! - # OR fix x in init and cut off the rest so you don't have to care what else is needed for F + def __init__(self, norm, lam, add_params=0): self._log.debug('Calling __init__') self.norm = norm self.lam = lam - if add_params is not None: - self.add_params = -add_params # Workaround! For indexing -None does NOT exist! - #TODO: define slice! + self.add_params = add_params + if self.add_params > 0: + self.slice = slice(-add_params) else: - self.add_params = None + self.slice = slice(None) self._log.debug('Created '+str(self)) def __call__(self, x): self._log.debug('Calling __call__') - # TODO: assert len(x) - self.add_params korrekt - return self.lam * self.norm(x[:self.add_params]) + return self.lam * self.norm(x[self.slice]) def __repr__(self): - self._log.debug('Calling __repr__') # TODO: add_params - return '%s(norm=%r, lam=%r)' % (self.__class__, self.norm, self.lam) + self._log.debug('Calling __repr__') + return '%s(norm=%r, lam=%r, add_params=%r)' % (self.__class__, self.norm, self.lam, + self.add_params) def __str__(self): self._log.debug('Calling __str__') - return 'Regularisator(norm=%s, lam=%s)' % (self.norm, self.lam) + return 'Regularisator(norm=%s, lam=%s, add_params=%s)' % (self.norm, self.lam, + self.add_params) def jac(self, x): '''Calculate the derivative of the regularisation term for a given magnetic distribution. @@ -83,7 +86,7 @@ class Regularisator(object): ''' result = np.zeros_like(x) - result[:self.add_params] = self.lam * self.norm.jac(x[:self.add_params]) + result[self.slice] = self.lam * self.norm.jac(x[self.slice]) return result def hess_dot(self, x, vector): @@ -105,8 +108,8 @@ class Regularisator(object): Product of the input `vector` with the Hessian matrix. ''' - result = np.zeros_like(x) - result[:self.add_params] = self.lam * self.norm.hess_dot(x, vector[:self.add_params]) + result = np.zeros_like(vector) + result[self.slice] = self.lam * self.norm.hess_dot(x, vector[self.slice]) return result def hess_diag(self, x): @@ -128,7 +131,7 @@ class Regularisator(object): ''' self._log.debug('Calling hess_diag') result = np.zeros_like(x) - result[:self.add_params] = self.lam * self.norm.hess_diag(x[:self.add_params]) + result[self.slice] = self.lam * self.norm.hess_diag(x[self.slice]) return result diff --git a/pyramid/version.py b/pyramid/version.py index bf68b51..9d9f9c9 100644 --- a/pyramid/version.py +++ b/pyramid/version.py @@ -1,3 +1,3 @@ # THIS FILE IS GENERATED BY THE PYRAMID SETUP.PY version = "0.1.0-dev" -hg_revision = "e2e912d70bc2+" +hg_revision = "711e66d3213b+" diff --git a/scripts/phasemap/phasemap_from_image.py b/scripts/phasemap/phasemap_from_image.py index d0d1dd6..35f2175 100644 --- a/scripts/phasemap/phasemap_from_image.py +++ b/scripts/phasemap/phasemap_from_image.py @@ -12,25 +12,30 @@ import logging.config logging.config.fileConfig(py.LOGGING_CONFIG, disable_existing_loggers=False) ################################################################################################### -path_mag = 'Arnaud_M.tif' -path_ele = 'Arnaud_MIP_mask.tif' -filename = 'phasemap_tif_martial_skyrmion.nc' -a = 2 +path_mag = 'trevor_magnetite_m20.bmp' +path_mask = 'trevor_magnetite_mask20.bmp' +filename = 'phasemap_bmp_trevor_magnetite_m20.nc' +a = 0.4 # nm dim_uv = None max_phase = 1 threshold = 0.5 offset = 0 +flip_up_down = True ################################################################################################### # Load images: im_mag = Image.open(os.path.join(py.DIR_FILES, 'images', path_mag)).convert('P') -im_ele = Image.open(os.path.join(py.DIR_FILES, 'images', path_ele)).convert('P') +if flip_up_down: + im_mag = im_mag.transpose(Image.FLIP_TOP_BOTTOM) +im_mask = Image.open(os.path.join(py.DIR_FILES, 'images', path_mask)).convert('P') +if flip_up_down: + im_mask = im_mask.transpose(Image.FLIP_TOP_BOTTOM) if dim_uv is not None: im_mag = im_mag.resize(dim_uv) - im_ele = im_ele.resize(dim_uv) + im_mask = im_mask.resize(dim_uv) # Calculate phase and mask: phase = np.asarray(im_mag)/255.*max_phase - offset -mask = np.where(np.asarray(im_ele)/255. >= threshold, True, False) +mask = np.where(np.asarray(im_mask)/255. >= threshold, True, False) # Create and save PhaseMap object: phase_map = py.PhaseMap(a, phase, mask, confidence=None, unit='rad') diff --git a/scripts/reconstruction/reconstruction_2d_from_phasemap.py b/scripts/reconstruction/reconstruction_2d_from_phasemap.py index 4e17081..1efb602 100644 --- a/scripts/reconstruction/reconstruction_2d_from_phasemap.py +++ b/scripts/reconstruction/reconstruction_2d_from_phasemap.py @@ -11,13 +11,12 @@ import logging.config logging.config.fileConfig(pr.LOGGING_CONFIG, disable_existing_loggers=False) ################################################################################################### -phase_name = 'phasemap_dm3_zi_an_elongated_nanorod' +phase_name = 'phasemap_bmp_trevor_magnetite_m20' b_0 = 0.6 # in T lam = 1E-3 max_iter = 100 buffer_pixel = 0 -fit_ramps = True -fit_offsets = True +order = 1 ################################################################################################### # Load phase map: @@ -29,22 +28,18 @@ dim = (1,) + phase_map.dim_uv data = pr.DataSet(phase_map.a, dim, b_0) data.append(phase_map, pr.SimpleProjector(dim)) data.set_3d_mask() -if fit_ramps: - add_param_count = 3 -elif fit_offsets: - add_param_count = 1 -else: - add_param_count = None -reg = pr.FirstOrderRegularisator(data.mask, lam, add_params=add_param_count) -fwd_model = pr.ForwardModel(data, fit_offsets=fit_offsets, fit_ramps=fit_ramps) + +fwd_model = pr.ForwardModel(data, order) +reg = pr.FirstOrderRegularisator(data.mask, lam, add_params=fwd_model.ramp.n) cost = pr.Costfunction(fwd_model, reg) # Reconstruct and save: with TakeTime('reconstruction time'): - mag_data_rec, add_info = pr.reconstruction.optimize_linear(cost, max_iter=max_iter) -if fit_ramps: - offset, ramp = add_info[0][0], add_info[1][0] -elif fit_offsets: + mag_data_rec = pr.reconstruction.optimize_linear(cost, max_iter=max_iter) + add_info = cost.fwd_model.ramp.param_cache +if order >= 1: + offset, ramp = add_info[0][0], (add_info[1][0], add_info[2][0]) +elif order == 0: offset = add_info[0][0] mag_data_buffer = mag_data_rec.copy() mag_data_rec.crop((0, buffer_pixel, buffer_pixel)) @@ -55,15 +50,18 @@ mag_data_rec.save_to_netcdf4(mag_name+'.nc') mag_data_rec.quiver_plot('Reconstructed Distribution', ar_dens=np.ceil(np.max(dim)/128.)) phase_map.crop((buffer_pixel, buffer_pixel)) phase_map.display_combined('Input Phase') +phase_map -= fwd_model.ramp(index=0) +phase_map.display_combined('Input Phase (ramp corrected)') phase_map_rec = pr.pm(mag_data_rec) -phase_map_rec.mask = phase_map.mask title = 'Reconstructed Phase' -if fit_offsets: +if order >= 0: print 'offset:', offset title += ', fitted Offset: {:.2g} [rad]'.format(offset) -if fit_ramps: +if order >= 1: print 'ramp:', ramp title += ', (Fitted Ramp: (u:{:.2g}, v:{:.2g}) [rad/nm]'.format(*ramp) phase_map_rec.display_combined(title) difference = (phase_map_rec.phase-phase_map.phase).mean() (phase_map_rec-phase_map).display_phase('Difference (mean: {:.2g})'.format(difference)) +if order is not None: + fwd_model.ramp(0).display_combined('Fitted Ramp') diff --git a/scripts/reconstruction/reconstruction_3d_from_magdata.py b/scripts/reconstruction/reconstruction_3d_from_magdata.py index 8d1a763..2fa182e 100644 --- a/scripts/reconstruction/reconstruction_3d_from_magdata.py +++ b/scripts/reconstruction/reconstruction_3d_from_magdata.py @@ -22,8 +22,8 @@ max_iter = 100 use_internal_mask = True offset_max = 2 ramp_max = 0.01 -fit_ramps = True -fit_offsets = True +order = 1 +show_input = True ################################################################################################### # Load magnetization distribution: @@ -59,8 +59,9 @@ if noise != 0: data.phase_maps[i] = phase_map # Plot input: -for i, phase_map in enumerate(data.phase_maps): - phase_map.display_phase() +if show_input: + for i, phase_map in enumerate(data.phase_maps): + phase_map.display_phase() # Construct mask: if use_internal_mask: @@ -69,30 +70,19 @@ else: data.set_3d_mask() # Construct mask from 2D phase masks! # Construct regularisator, forward model and costfunction: -if fit_ramps: - add_param_count = 3 * data.count -elif fit_offsets: - add_param_count = data.count -else: - add_param_count = None -reg = pr.FirstOrderRegularisator(data.mask, lam, add_params=add_param_count) -fwd_model = pr.ForwardModel(data, fit_offsets=fit_offsets, fit_ramps=fit_ramps) +fwd_model = pr.ForwardModel(data, ramp_order=order) +reg = pr.FirstOrderRegularisator(data.mask, lam, add_params=fwd_model.ramp.n) cost = pr.Costfunction(fwd_model, reg) # Reconstruct and save: with TakeTime('reconstruction time'): - mag_data_rec, add_info = pr.reconstruction.optimize_linear(cost, max_iter=max_iter) -if fit_ramps: - offset, ramp = add_info[0], add_info[1] - print 'offsets:', offset - print 'ramps:', ramp -elif fit_offsets: - offset = add_info[0] - print 'offset:', offset + mag_data_rec = pr.reconstruction.optimize_linear(cost, max_iter=max_iter) + param_cache = cost.fwd_model.ramp.param_cache mag_name_rec = mag_name.replace('magdata', 'magdata_rec') mag_data_rec.save_to_netcdf4(mag_name_rec+'.nc') # Plot stuff: + data.display_mask(ar_dens=np.ceil(np.max(dim)/64.)) mag_data.quiver_plot3d('Original Distribution', ar_dens=np.ceil(np.max(dim)/64.)) mag_data_rec.quiver_plot3d('Reconstructed Distribution', ar_dens=np.ceil(np.max(dim)/64.)) diff --git a/scripts/temp/test_dim_uv_projection.py b/scripts/temp/test_dim_uv_projection.py index b231245..2634862 100644 --- a/scripts/temp/test_dim_uv_projection.py +++ b/scripts/temp/test_dim_uv_projection.py @@ -9,11 +9,10 @@ import numpy as np import pyramid as pr -dim = (1, 2, 2) -a = 5 -dim_uv = (a, a) -width = (1, 1, 1) -center = (0.5, 1, 1) +dim = (1, 5, 5) +dim_uv = None +width = (1, 2, 2) +center = (0.5, 2.5, 2.5) mag_shape = pr.magcreator.Shapes.slab(dim, center, width) mag_data = pr.MagData(10, pr.magcreator.create_mag_dist_homog(mag_shape, np.pi/4)) mag_data.quiver_plot() @@ -22,3 +21,4 @@ mag_proj = projector(mag_data) mag_proj.quiver_plot() pr.pm(mag_proj).display_combined() weight = np.array(projector.weight.todense()) +pr.an.phase_mag_vortex(dim, 10, center, 12.5, 1).display_combined() diff --git a/scripts/temp/warning_control.py b/scripts/temp/warning_control.py new file mode 100644 index 0000000..324fadb --- /dev/null +++ b/scripts/temp/warning_control.py @@ -0,0 +1,24 @@ +# -*- coding: utf-8 -*- +""" +Created on Sun Jul 19 13:03:30 2015 + +@author: Jan +""" + + +import pyramid as pr +import warnings +import logging.config + + +logging.config.fileConfig(pr.LOGGING_CONFIG, disable_existing_loggers=False) + +#with warnings.catch_warnings(): +# warnings.simplefilter("ignore") +logging.disable = True +warnings.warn('TEST') +from mayavi import mlab +warnings.warn('TEST') +logging.disable = False + +print mlab diff --git a/tests/test_analytic.py b/tests/test_analytic.py index dbdd9d6..7b7637f 100644 --- a/tests/test_analytic.py +++ b/tests/test_analytic.py @@ -19,7 +19,7 @@ class TestCaseAnalytic(unittest.TestCase): dim = (4, 4, 4) a = 10.0 phi = pi/4 - center = (dim[0]/2-0.5, dim[1]/2-0.5, dim[2]/2-0.5) + center = (dim[0]/2, dim[1]/2, dim[2]/2) radius = dim[2]/4 def test_phase_mag_slab(self): @@ -42,7 +42,8 @@ class TestCaseAnalytic(unittest.TestCase): radius = self.dim[2]/4 phase = an.phase_mag_sphere(self.dim, self.a, self.phi, self.center, radius).phase reference = np.load(os.path.join(self.path, 'ref_phase_sphere.npy')) - assert_allclose(phase, reference, err_msg='Unexpected behavior in phase_mag_sphere()') + assert_allclose(phase, reference, err_msg='Unexpected behavior in phase_mag_sphere()', + atol=1E-10) def test_phase_mag_vortex(self): '''Test of the phase_mag_vortex method.''' diff --git a/tests/test_magcreator.py b/tests/test_magcreator.py index 6ba7371..980d631 100644 --- a/tests/test_magcreator.py +++ b/tests/test_magcreator.py @@ -17,14 +17,14 @@ class TestCaseMagCreator(unittest.TestCase): path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'test_magcreator') def test_shape_slab(self): - test_slab = mc.Shapes.slab((5, 6, 7), (2, 3, 4), (1, 3, 5)) + test_slab = mc.Shapes.slab((5, 6, 7), (2.5, 3.5, 4.5), (1, 3, 5)) assert_allclose(test_slab, np.load(os.path.join(self.path, 'ref_slab.npy')), err_msg='Created slab does not match expectation!') def test_shape_disc(self): - test_disc_z = mc.Shapes.disc((5, 6, 7), (2, 3, 4), 2, 3, 'z') - test_disc_y = mc.Shapes.disc((5, 6, 7), (2, 3, 4), 2, 3, 'y') - test_disc_x = mc.Shapes.disc((5, 6, 7), (2, 3, 4), 2, 3, 'x') + test_disc_z = mc.Shapes.disc((5, 6, 7), (2.5, 3.5, 4.5), 2, 3, 'z') + test_disc_y = mc.Shapes.disc((5, 6, 7), (2.5, 3.5, 4.5), 2, 3, 'y') + test_disc_x = mc.Shapes.disc((5, 6, 7), (2.5, 3.5, 4.5), 2, 3, 'x') assert_allclose(test_disc_z, np.load(os.path.join(self.path, 'ref_disc_z.npy')), err_msg='Created disc in z-direction does not match expectation!') assert_allclose(test_disc_y, np.load(os.path.join(self.path, 'ref_disc_y.npy')), @@ -33,23 +33,23 @@ class TestCaseMagCreator(unittest.TestCase): err_msg='Created disc in x-direction does not match expectation!') def test_shape_ellipse(self): - test_ellipse_z = mc.Shapes.ellipse((7, 8, 9), (3, 4, 5), (3, 5), 1, 'z') - test_ellipse_y = mc.Shapes.ellipse((7, 8, 9), (3, 4, 5), (3, 5), 1, 'y') - test_ellipse_x = mc.Shapes.ellipse((7, 8, 9), (3, 4, 5), (3, 5), 1, 'x') + test_ellipse_z = mc.Shapes.ellipse((7, 8, 9), (3.5, 4.5, 5.5), (3, 5), 1, 'z') + test_ellipse_y = mc.Shapes.ellipse((7, 8, 9), (3.5, 4.5, 5.5), (3, 5), 1, 'y') + test_ellipse_x = mc.Shapes.ellipse((7, 8, 9), (3.5, 4.5, 5.5), (3, 5), 1, 'x') assert_allclose(test_ellipse_z, np.load(os.path.join(self.path, 'ref_ellipse_z.npy')), - err_msg='Created ellipse does not match expectation!') + err_msg='Created ellipse does not match expectation (z)!') assert_allclose(test_ellipse_y, np.load(os.path.join(self.path, 'ref_ellipse_y.npy')), - err_msg='Created ellipse does not match expectation!') + err_msg='Created ellipse does not match expectation (y)!') assert_allclose(test_ellipse_x, np.load(os.path.join(self.path, 'ref_ellipse_x.npy')), - err_msg='Created ellipse does not match expectation!') + err_msg='Created ellipse does not match expectation (x)!') def test_shape_sphere(self): - test_sphere = mc.Shapes.sphere((5, 6, 7), (2, 3, 4), 2) + test_sphere = mc.Shapes.sphere((5, 6, 7), (2.5, 3.5, 4.5), 2) assert_allclose(test_sphere, np.load(os.path.join(self.path, 'ref_sphere.npy')), err_msg='Created sphere does not match expectation!') def test_shape_ellipsoid(self): - test_ellipsoid = mc.Shapes.ellipsoid((7, 8, 9), (3, 4, 4), (3, 5, 7)) + test_ellipsoid = mc.Shapes.ellipsoid((7, 8, 9), (3.5, 4.5, 4.5), (3, 5, 7)) assert_allclose(test_ellipsoid, np.load(os.path.join(self.path, 'ref_ellipsoid.npy')), err_msg='Created ellipsoid does not match expectation!') @@ -70,13 +70,13 @@ class TestCaseMagCreator(unittest.TestCase): err_msg='Created pixel does not match expectation!') def test_create_mag_dist_homog(self): - mag_shape = mc.Shapes.disc((1, 10, 10), (0, 4.5, 4.5), 3, 1) + mag_shape = mc.Shapes.disc((1, 10, 10), (0, 5, 5), 3, 1) magnitude = mc.create_mag_dist_homog(mag_shape, pi/4) assert_allclose(magnitude, np.load(os.path.join(self.path, 'ref_mag_disc.npy')), err_msg='Created homog. magnetic distribution does not match expectation') def test_create_mag_dist_vortex(self): - mag_shape = mc.Shapes.disc((1, 10, 10), (0, 4.5, 4.5), 3, 1) + mag_shape = mc.Shapes.disc((1, 10, 10), (0, 5, 5), 3, 1) magnitude = mc.create_mag_dist_vortex(mag_shape) assert_allclose(magnitude, np.load(os.path.join(self.path, 'ref_mag_vort.npy')), err_msg='Created vortex magnetic distribution does not match expectation') diff --git a/tests/test_magcreator/ref_ellipsoid.npy b/tests/test_magcreator/ref_ellipsoid.npy index 8abca7c48658e9f9df018d7869ba2dc4461b1d9a..f040dfd61b0d6ab846cce0e0a9f9defb108a4eb4 100644 GIT binary patch delta 39 acmX@Xa)M=pGov&EBLpyDGA73{z5)Pd@&uUx delta 39 WcmX@Xa)M=pGov&kZZJ8H@f84PUId>2 diff --git a/tests/test_regularisator.py b/tests/test_regularisator.py index 39ef31c..656ff94 100644 --- a/tests/test_regularisator.py +++ b/tests/test_regularisator.py @@ -128,7 +128,7 @@ class TestCaseFirstOrderRegularisator(unittest.TestCase): err_msg='Unexpected behaviour in hess_dot()!') def test_hess_diag(self): - hess_diag = self.reg.hess_diag(np.ones(self.n)) + hess_diag = self.reg.hess_diag(np.ones(3*self.n)) # derivatives in all directions! hess_diag_ref = np.zeros(3*self.n) # derivatives in all directions! first_order_jac_ref = np.load(os.path.join(self.path, 'first_order_jac_ref.npy')) hess_diag_ref[0:self.n] = np.diag(first_order_jac_ref) -- GitLab