From fa0ff9d0e527f9e7b4dd8f26af4179f709493ac0 Mon Sep 17 00:00:00 2001 From: Jan Caron <j.caron@fz-juelich.de> Date: Thu, 30 Oct 2014 00:51:11 +0100 Subject: [PATCH] Minor changes to reconstruction and example_joern --- pyramid/reconstruction.py | 18 +++++++----------- scripts/collaborations/example_joern.py | 2 +- 2 files changed, 8 insertions(+), 12 deletions(-) diff --git a/pyramid/reconstruction.py b/pyramid/reconstruction.py index 1eff2ea..d36544d 100644 --- a/pyramid/reconstruction.py +++ b/pyramid/reconstruction.py @@ -12,16 +12,16 @@ the distribution. import numpy as np -from scipy.sparse.linalg import cg -from scipy.optimize import minimize, leastsq - from pyramid.kernel import Kernel from pyramid.projector import SimpleProjector from pyramid.phasemapper import PhaseMapperRDFC -from pyramid.forwardmodel import ForwardModel -from pyramid.costfunction import Costfunction, CFAdapterScipyCG +from pyramid.costfunction import Costfunction from pyramid.magdata import MagData +from jutil import cg, minimizer + +from scipy.optimize import leastsq + import logging @@ -113,13 +113,11 @@ def optimize_linear(data, regularisator=None, maxiter=1000, verbosity=0): The reconstructed magnetic distribution as a :class:`~.MagData` object. ''' - import jutil LOG.debug('Calling optimize_sparse_cg') # Set up necessary objects: - fwd_model = ForwardModel(data) cost = Costfunction(data, regularisator) print cost(np.zeros(cost.n)) - x_opt = jutil.cg.conj_grad_minimize(cost) + x_opt = cg.conj_grad_minimize(cost) print cost(x_opt) # Create and return fitting MagData object: mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) @@ -148,15 +146,13 @@ def optimize_nonlin(data, first_guess=None, regularisator=None): The reconstructed magnetic distribution as a :class:`~.MagData` object. ''' - import jutil LOG.debug('Calling optimize_cg') if first_guess is None: first_guess = MagData(data.a, np.zeros((3,)+data.dim)) x_0 = first_guess.mag_vec - fwd_model = ForwardModel(data) cost = Costfunction(data, regularisator) assert len(x_0) == cost.n, (len(x_0), cost.m, cost.n) - result = jutil.minimizer.minimize(cost, x_0, options={"conv_rel":1e-20}, tol={"max_iteration":1}) + result = minimizer.minimize(cost, x_0, options={"conv_rel": 1e-20}, tol={"max_iteration": 1}) x_opt = result.x print cost(x_opt) mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) diff --git a/scripts/collaborations/example_joern.py b/scripts/collaborations/example_joern.py index e3b1a4d..4715511 100644 --- a/scripts/collaborations/example_joern.py +++ b/scripts/collaborations/example_joern.py @@ -41,7 +41,7 @@ smoothed_pictures = True lam = 1E-4 order = 1 log = True -PATH = './' +PATH = '../../output/joern/' dirname = PATH ################################################################################################### # Read in files: -- GitLab