# -*- coding: utf-8 -*- """Create simple LLG Files which describe magnetization in 2D (z-Dim=1).""" import numpy as np import matplotlib.pyplot as plt def slab(dim, center, width): '''Get the magnetic shape of a slab. Arguments: dim - the dimensions of the grid, shape(y, x) center - center of the slab in pixel coordinates, shape(y, x) width - width of the slab in pixel coordinates, shape(y, x) Returns: the magnetic shape as a 2D-boolean-array. ''' mag_shape = np.array([[abs(x - center[1]) <= width[1] / 2 and abs(y - center[0]) <= width[0] / 2 for x in range(dim[1])] for y in range(dim[0])]) return mag_shape def disc(dim, center, radius): '''Get the magnetic shape of a disc. Arguments: dim - the dimensions of the grid, shape(y, x) center - center of the disc in pixel coordinates, shape(y, x) radius - radius of the disc in pixel coordinates, shape(y, x) Returns: the magnetic shape as a 2D-boolean-array. ''' mag_shape = np.array([[(np.hypot(x-center[1], y-center[0]) <= radius) for x in range(dim[1])] for y in range(dim[0])]) return mag_shape def filament(dim, pos, x_or_y): '''Get the magnetic shape of a single filament in x or y direction. Arguments: dim - the dimensions of the grid, shape(y, x) pos - position of the filament (pixel coordinate) x_or_y - string that determines the orientation of the filament ('y' or 'x') Returns: the magnetic shape as a 2D-boolean-array. ''' mag_shape = np.zeros(dim) if x_or_y == 'y': mag_shape[:, pos] = 1 else: mag_shape[pos, :] = 1 return mag_shape def alternating_filaments(dim, spacing, x_or_y): '''Get the magnetic shape of alternating filaments in x or y direction. Arguments: dim - the dimensions of the grid, shape(y, x) spacing - the distance between two filaments (pixel coordinate) x_or_y - string that determines the orientation of the filament ('y' or 'x') Returns: the magnetic shape as a 2D-boolean-array. ''' mag_shape = np.zeros(dim) if x_or_y == 'y': # TODO: List comprehension: for i in range(0, dim[1], spacing): mag_shape[:, i] = 1 - 2 * (int(i / spacing) % 2) # 1 or -1 else: for i in range(0, dim[0], spacing): mag_shape[i, :] = 1 - 2 * (int(i / spacing) % 2) # 1 or -1 return mag_shape def single_pixel(dim, pixel): '''Get the magnetic shape of a single magnetized pixel. Arguments: dim - the dimensions of the grid, shape(y, x) pixel - the coordinates of the magnetized pixel, shape(y, x) Returns: the magnetic shape as a 2D-boolean-array. ''' mag_shape = np.zeros(dim) mag_shape[pixel[0], pixel[1]] = 1 return mag_shape def create_hom_mag(dim, res, beta, mag_shape, filename='output.txt', plot_mag_distr=False): '''Create homog. magnetization data, saved in a file with LLG-format. Arguments: dim - the dimensions of the grid, shape(y, x) res - the resolution of the grid (real space distance between two points) beta - the angle of the magnetization filename - the name of the file in which to save the data mag_shape - an array of shape dim, representing the shape of the magnetic object, a few are supplied in this module Returns: the the magnetic distribution as a 2D-boolean-array. ''' res *= 1.0E-9 / 1.0E-2 # from nm to cm x = np.linspace(res / 2, dim[1] * res - res / 2, num=dim[1]) y = np.linspace(res / 2, dim[0] * res - res / 2, num=dim[0]) xx, yy = np.meshgrid(x, y) x_mag = np.array(np.ones(dim)) * np.cos(beta) * mag_shape y_mag = np.array(np.ones(dim)) * np.sin(beta) * mag_shape z_mag = np.array(np.zeros(dim)) if (plot_mag_distr): fig = plt.figure() fig.add_subplot(111, aspect='equal') plt.quiver(x_mag, y_mag, pivot='middle', angles='xy', scale_units='xy', scale=1, headwidth=6, headlength=7) xx = np.reshape(xx,(-1)) yy = np.reshape(yy,(-1)) zz = np.array(np.ones(dim[0] * dim[1]) * res / 2) x_mag = np.reshape(x_mag,(-1)) y_mag = np.reshape(y_mag,(-1)) z_mag = np.array(np.zeros(dim[0] * dim[1])) data = np.array([xx, yy, zz, x_mag, y_mag, z_mag]).T with open(filename,'w') as mag_file: mag_file.write('LLGFileCreator2D: %s\n' % filename.replace('.txt', '')) mag_file.write(' %d %d %d\n' % (dim[1], dim[0], 1)) mag_file.writelines('\n'.join(' '.join('{:7.6e}'.format(cell) for cell in row) for row in data) )