# -*- coding: utf-8 -*- # Copyright 2014 by Forschungszentrum Juelich GmbH # Author: J. Caron # """This module provides the :class:`~.Kernel` class, representing the phase contribution of one single magnetized pixel.""" import numpy as np from pyramid import fft import logging __all__ = ['Kernel', 'PHI_0'] PHI_0 = 2067.83 # magnetic flux in T*nm² class Kernel(object): '''Class for calculating kernel matrices for the phase calculation. Represents the phase of a single magnetized pixel for two orthogonal directions (`u` and `v`), which can be accessed via the corresponding attributes. The default elementary geometry is `disc`, but can also be specified as the phase of a `slab` representation of a single magnetized pixel. During the construction, a few attributes are calculated that are used in the convolution during phase calculation in the different :class:`~Phasemapper` classes. An instance of the :class:`~.Kernel` class can be called as a function with a `vector`, which represents the projected magnetization onto a 2-dimensional grid. Attributes ---------- a : float The grid spacing in nm. dim_uv : tuple of int (N=2), optional Dimensions of the 2-dimensional projected magnetization grid from which the phase should be calculated. dim_kern : tuple of int (N=2) Dimensions of the kernel, which is ``2N-1`` for both axes compared to `dim_uv`. dim_pad : tuple of int (N=2) Dimensions of the padded FOV, which is ``2N`` (if FFTW is used) or the next highest power of 2 (for numpy-FFT). dim_fft : tuple of int (N=2) Dimensions of the grid, which is used for the FFT, taking into account that a RFFT should be used (one axis is halved in comparison to `dim_pad`). b_0 : float, optional Saturation magnetization in Tesla, which is used for the phase calculation. Default is 1. geometry : {'disc', 'slab'}, optional The elementary geometry of the single magnetized pixel. u : :class:`~numpy.ndarray` (N=3) The phase contribution of one pixel magnetized in u-direction. v : :class:`~numpy.ndarray` (N=3) The phase contribution of one pixel magnetized in v-direction. u_fft : :class:`~numpy.ndarray` (N=3) The real FFT of the phase contribution of one pixel magnetized in u-direction. v_fft : :class:`~numpy.ndarray` (N=3) The real FFT of the phase contribution of one pixel magnetized in v-direction. slice_phase : tuple (N=2) of :class:`slice` A tuple of :class:`slice` objects to extract the original FOV from the increased one with size `dim_pad` for the elementary kernel phase. The kernel is shifted, thus the center is not at (0, 0), which also shifts the slicing compared to `slice_mag`. slice_mag : tuple (N=2) of :class:`slice` A tuple of :class:`slice` objects to extract the original FOV from the increased one with size `dim_pad` for the projected magnetization distribution. pwr_vec: tuple of 2 int, optional A two-component vector describing the displacement of the reference wave to include perturbation of this reference by the object itself (via fringing fields). ''' _log = logging.getLogger(__name__+'.Kernel') def __init__(self, a, dim_uv, b_0=1., prw_vec=None, geometry='disc'): self._log.debug('Calling __init__') # Set basic properties: self.dim_uv = dim_uv # Dimensions of the FOV self.dim_kern = tuple(2*np.array(dim_uv)-1) # Dimensions of the kernel self.a = a self.geometry = geometry # Set up FFT: if fft.BACKEND == 'pyfftw': self.dim_pad = tuple(2*np.array(dim_uv)) # is at least even (not nec. power of 2) elif fft.BACKEND == 'numpy': self.dim_pad = tuple(2**np.ceil(np.log2(2*np.array(dim_uv))).astype(int)) # pow(2) self.dim_fft = (self.dim_pad[0], self.dim_pad[1]//2+1) # last axis is real self.slice_phase = (slice(dim_uv[0]-1, self.dim_kern[0]), # Shift because kernel center slice(dim_uv[1]-1, self.dim_kern[1])) # is not at (0, 0)! self.slice_mag = (slice(0, dim_uv[0]), # Magnetization is padded on the far end! slice(0, dim_uv[1])) # (Phase cutout is shifted as listed above) # Calculate kernel (single pixel phase): coeff = b_0 * a**2 / (2*PHI_0) # Minus is gone because of negative z-direction v_dim, u_dim = dim_uv u = np.linspace(-(u_dim-1), u_dim-1, num=2*u_dim-1) v = np.linspace(-(v_dim-1), v_dim-1, num=2*v_dim-1) uu, vv = np.meshgrid(u, v) self.u = fft.empty(self.dim_kern, fft.FLOAT) self.v = fft.empty(self.dim_kern, fft.FLOAT) self.u[...] = coeff * self._get_elementary_phase(geometry, uu, vv, a) self.v[...] = coeff * self._get_elementary_phase(geometry, vv, uu, a) # Include perturbed reference wave: if prw_vec is not None: uu += prw_vec[1] vv += prw_vec[0] self.u[...] -= coeff * self._get_elementary_phase(geometry, uu, vv, a) self.v[...] -= coeff * self._get_elementary_phase(geometry, vv, uu, a) # Calculate Fourier trafo of kernel components: self.u_fft = fft.rfftn(self.u, self.dim_pad) self.v_fft = fft.rfftn(self.v, self.dim_pad) self._log.debug('Created '+str(self)) def __repr__(self): self._log.debug('Calling __repr__') return '%s(a=%r, dim_uv=%r, geometry=%r)' % \ (self.__class__, self.a, self.dim_uv, self.geometry) def __str__(self): self._log.debug('Calling __str__') return 'Kernel(a=%s, dim_uv=%s, geometry=%s)' % \ (self.a, self.dim_uv, self.geometry) def _get_elementary_phase(self, geometry, n, m, a): self._log.debug('Calling _get_elementary_phase') if geometry == 'disc': in_or_out = np.logical_not(np.logical_and(n == 0, m == 0)) return m / (n**2 + m**2 + 1E-30) * in_or_out elif geometry == 'slab': def F_a(n, m): A = np.log(a**2 * (n**2 + m**2)) B = np.arctan(n / m) return n*A - 2*n + 2*m*B return 0.5 * (F_a(n-0.5, m-0.5) - F_a(n+0.5, m-0.5) - F_a(n-0.5, m+0.5) + F_a(n+0.5, m+0.5)) def print_info(self): '''Print information about the kernel. Parameters ---------- None Returns ------- None ''' self._log.debug('Calling print_info') print 'Shape of the FOV :', self.dim_uv print 'Shape of the Kernel:', self.dim_kern print 'Zero-padded shape :', self.dim_pad print 'Shape of the FFT :', self.dim_fft print 'Slice for the phase:', self.slice_phase print 'Slice for the magn.:', self.slice_mag print 'Grid spacing: {} nm'.format(self.a) print 'Geometry:', self.geometry