# -*- coding: utf-8 -*- # Copyright 2014 by Forschungszentrum Juelich GmbH # Author: J. Caron # """This module provides the :class:`~.Kernel` class, representing the phase contribution of one single magnetized pixel.""" import logging import numpy as np from jutil import fft __all__ = ['Kernel', 'PHI_0'] PHI_0 = 2067.83 # magnetic flux in T*nm² class Kernel(object): """Class for calculating kernel matrices for the phase calculation. Represents the phase of a single magnetized pixel for two orthogonal directions (`u` and `v`), which can be accessed via the corresponding attributes. The default elementary geometry is `disc`, but can also be specified as the phase of a `slab` representation of a single magnetized pixel. During the construction, a few attributes are calculated that are used in the convolution during phase calculation in the different :class:`~Phasemapper` classes. An instance of the :class:`~.Kernel` class can be called as a function with a `vector`, which represents the projected magnetization onto a 2-dimensional grid. Attributes ---------- a : float The grid spacing in nm. dim_uv : tuple of int (N=2), optional Dimensions of the 2-dimensional projected magnetization grid from which the phase should be calculated. dim_kern : tuple of int (N=2) Dimensions of the kernel, which is ``2N-1`` for both axes compared to `dim_uv`. dim_pad : tuple of int (N=2) Dimensions of the padded FOV, which is ``2N`` (if FFTW is used) or the next highest power of 2 (for numpy-FFT). dim_fft : tuple of int (N=2) Dimensions of the grid, which is used for the FFT, taking into account that a RFFT should be used (one axis is halved in comparison to `dim_pad`). b_0 : float, optional Saturation magnetization in Tesla, which is used for the phase calculation. Default is 1. geometry : {'disc', 'slab'}, optional The elementary geometry of the single magnetized pixel. u : :class:`~numpy.ndarray` (N=3) The phase contribution of one pixel magnetized in u-direction. v : :class:`~numpy.ndarray` (N=3) The phase contribution of one pixel magnetized in v-direction. u_fft : :class:`~numpy.ndarray` (N=3) The real FFT of the phase contribution of one pixel magnetized in u-direction. v_fft : :class:`~numpy.ndarray` (N=3) The real FFT of the phase contribution of one pixel magnetized in v-direction. slice_phase : tuple (N=2) of :class:`slice` A tuple of :class:`slice` objects to extract the original FOV from the increased one with size `dim_pad` for the elementary kernel phase. The kernel is shifted, thus the center is not at (0, 0), which also shifts the slicing compared to `slice_mag`. slice_mag : tuple (N=2) of :class:`slice` A tuple of :class:`slice` objects to extract the original FOV from the increased one with size `dim_pad` for the projected magnetization distribution. prw_vec: tuple of 2 int, optional A two-component vector describing the displacement of the reference wave to include perturbation of this reference by the object itself (via fringing fields), (y, x). dtype: numpy dtype, optional Data type of the kernel. Default is np.float32. """ _log = logging.getLogger(__name__ + '.Kernel') def __init__(self, a, dim_uv, b_0=1., prw_vec=None, geometry='disc', dtype=np.float32): self._log.debug('Calling __init__') # Set basic properties: self.b_0 = b_0 self.prw_vec = prw_vec self.dim_uv = dim_uv # Dimensions of the FOV self.dim_kern = tuple(2 * np.array(dim_uv) - 1) # Dimensions of the kernel self.a = a self.geometry = geometry # Set up FFT: if fft.HAVE_FFTW: self.dim_pad = tuple(2 * np.array(dim_uv)) # is at least even (not nec. power of 2) else: self.dim_pad = tuple(2 ** np.ceil(np.log2(2 * np.array(dim_uv))).astype(int)) # pow(2) self.dim_fft = (self.dim_pad[0], self.dim_pad[1] // 2 + 1) # last axis is real self.slice_phase = (slice(dim_uv[0] - 1, self.dim_kern[0]), # Shift because kernel center slice(dim_uv[1] - 1, self.dim_kern[1])) # is not at (0, 0)! self.slice_mag = (slice(0, dim_uv[0]), # Magnetization is padded on the far end! slice(0, dim_uv[1])) # (Phase cutout is shifted as listed above) # Calculate kernel (single pixel phase): # [M_0] = A/m --> This is the magnetization, not the magnetic moment (A/m * m³ = Am²)! # [PHI_0 / µ_0] = Tm² / Tm/A = Am # [b_0] = [M_0] * [µ_0] = A/m * N/A² = N/Am = T # [coeff] = [b_0 * a² / (2*PHI_0)] = T * m² / Tm² = 1 --> without unit (phase)! coeff = b_0 * a ** 2 / (2 * PHI_0) # Minus is gone because of negative z-direction v_dim, u_dim = dim_uv u = np.linspace(-(u_dim - 1), u_dim - 1, num=2 * u_dim - 1) v = np.linspace(-(v_dim - 1), v_dim - 1, num=2 * v_dim - 1) uu, vv = np.meshgrid(u, v) # TODO: u, v are coordinates, rename self.u/v to self.kern_u/v! self.u = np.empty(self.dim_kern, dtype=dtype) self.v = np.empty(self.dim_kern, dtype=dtype) self.u[...] = coeff * self._get_elementary_phase(geometry, uu, vv, a) # TODO: The minus sign belongs into the phasemapper (debatable)! self.v[...] = coeff * -self._get_elementary_phase(geometry, vv, uu, a) # Include perturbed reference wave: if prw_vec is not None: uu += prw_vec[1] vv += prw_vec[0] self.u[...] -= coeff * self._get_elementary_phase(geometry, uu, vv, a) # TODO: The minus sign belongs into the phasemapper (debatable)! self.v[...] -= coeff * -self._get_elementary_phase(geometry, vv, uu, a) # Calculate Fourier trafo of kernel components: self.u_fft = fft.rfftn(self.u, self.dim_pad) self.v_fft = fft.rfftn(self.v, self.dim_pad) self._log.debug('Created ' + str(self)) def __repr__(self): self._log.debug('Calling __repr__') return '%s(a=%r, dim_uv=%r, b_0=%r, prw_vec=%r, geometry=%r)' % \ (self.__class__, self.a, self.dim_uv, self.b_0, self.prw_vec, self.geometry) def __str__(self): self._log.debug('Calling __str__') return 'Kernel(a=%s, dim_uv=%s, b_0=%s, prw_vec=%s, geometry=%s)' % \ (self.a, self.dim_uv, self.b_0, self.prw_vec, self.geometry) def _get_elementary_phase(self, geometry, n, m, a): self._log.debug('Calling _get_elementary_phase') # TODO: Rename n m to p q ? if geometry == 'disc': in_or_out = ~ np.logical_and(n == 0, m == 0) return m / (n ** 2 + m ** 2 + 1E-30) * in_or_out elif geometry == 'slab': def _F_a(n, m): A = np.log(a ** 2 * (n ** 2 + m ** 2)) B = np.arctan(n / m) return n * A - 2 * n + 2 * m * B return 0.5 * (_F_a(n - 0.5, m - 0.5) - _F_a(n + 0.5, m - 0.5) - _F_a(n - 0.5, m + 0.5) + _F_a(n + 0.5, m + 0.5)) def print_info(self): """Print information about the kernel. Returns ------- None """ self._log.debug('Calling log_info') print('Shape of the FOV :', self.dim_uv) print('Shape of the Kernel :', self.dim_kern) print('Zero-padded shape :', self.dim_pad) print('Shape of the FFT :', self.dim_fft) print('Slice for the phase :', self.slice_phase) print('Slice for the magn. :', self.slice_mag) print('Saturation Induction:', self.b_0) print('Grid spacing : {} nm'.format(self.a)) print('Geometry :', self.geometry) print('PRW vector : {} T'.format(self.prw_vec))