# -*- coding: utf-8 -*- # Copyright 2014 by Forschungszentrum Juelich GmbH # Author: J. Caron # """This module provides the :class:`~.DataSet` class for the collection of phase maps and additional data like corresponding projectors.""" import logging from numbers import Number from pyramid.kernel import Kernel from pyramid.phasemap import PhaseMap from pyramid.phasemapper import PhaseMapperRDFC from pyramid.projector import Projector import matplotlib.pyplot as plt import numpy as np from scipy import sparse __all__ = ['DataSet'] class DataSet(object): """Class for collecting phase maps and corresponding projectors. Represents a collection of (e.g. experimentally derived) phase maps, stored as :class:`~.PhaseMap` objects and corresponding projectors stored as :class:`~.Projector` objects. At creation, the grid spacing `a` and the dimension `dim` of the magnetization distribution have to be given. Data can be added via the :func:`~.append` method, where a :class:`~.PhaseMap`, a :class:`~.Projector` and additional info have to be given. Attributes ---------- a: float The grid spacing in nm. dim: tuple (N=3) Dimensions of the 3D magnetization distribution. b_0: double The saturation induction in `T`. mask: :class:`~numpy.ndarray` (N=3), optional A boolean mask which defines the magnetized volume in 3D. Se_inv : :class:`~numpy.ndarray` (N=2), optional Inverted covariance matrix of the measurement errors. The matrix has size `NxN` with N being the length of the targetvector y (vectorized phase map information). projectors: list of :class:`~.Projector` A list of all stored :class:`~.Projector` objects. phasemaps: list of :class:`~.PhaseMap` A list of all stored :class:`~.PhaseMap` objects. phase_vec: :class:`~numpy.ndarray` (N=1) The concatenaded, vectorized phase of all :class:`~.PhaseMap` objects. count(self): int Number of phase maps and projectors in the dataset. hook_points(self): :class:`~numpy.ndarray` (N=1) Hook points which determine the start of values of a phase map in the `phase_vec`. The length is `count + 1`. """ _log = logging.getLogger(__name__ + '.DataSet') @property def a(self): """The grid spacing in nm.""" return self._a @a.setter def a(self, a): assert isinstance(a, Number), 'Grid spacing has to be a number!' assert a >= 0, 'Grid spacing has to be a positive number!' self._a = float(a) @property def mask(self): """A boolean mask which defines the magnetized volume in 3D.""" return self._mask @mask.setter def mask(self, mask): if mask is not None: assert mask.shape == self.dim, 'Mask dimensions must match!' else: mask = np.ones(self.dim, dtype=bool) self._mask = mask.astype(np.bool) @property def m(self): """Size of the image space.""" return np.sum([len(p.phase_vec) for p in self.phasemaps]) @property def n(self): """Size of the input space.""" return 3 * np.sum(self.mask) @property def count(self): """Number of phase maps and projectors in the dataset.""" return len(self.projectors) @property def phase_vec(self): """The concatenaded, vectorized phase of all ;class:`~.PhaseMap` objects.""" return np.concatenate([p.phase_vec for p in self.phasemaps]) @property def hook_points(self): """Hook points which determine the start of values of a phase map in the `phase_vec`.""" result = [0] for i, phasemap in enumerate(self.phasemaps): result.append(result[i] + np.prod(phasemap.dim_uv)) return result @property def phasemappers(self): """List of phase mappers, created on demand with the projectors in mind.""" dim_uv_set = set([p.dim_uv for p in self.projectors]) kernel_list = [Kernel(self.a, dim_uv) for dim_uv in dim_uv_set] return {kernel.dim_uv: PhaseMapperRDFC(kernel) for kernel in kernel_list} def __init__(self, a, dim, b_0=1, mask=None, Se_inv=None): self._log.debug('Calling __init__') assert isinstance(dim, tuple) and len(dim) == 3, \ 'Dimension has to be a tuple of length 3!' self.a = a self.dim = dim self.b_0 = b_0 self.mask = mask self.Se_inv = Se_inv self.phasemaps = [] self.projectors = [] self._log.debug('Created: ' + str(self)) def __repr__(self): self._log.debug('Calling __repr__') return '%s(a=%r, dim=%r, b_0=%r, mask=%r, Se_inv=%r)' % (self.__class__, self.a, self.dim, self.b_0, self.mask, self.Se_inv) def __str__(self): self._log.debug('Calling __str__') return 'DataSet(a=%s, dim=%s, b_0=%s)' % (self.a, self.dim, self.b_0) def append(self, phasemap, projector): """Appends a data pair of phase map and projection infos to the data collection.` Parameters ---------- phasemap: :class:`~.PhaseMap` A :class:`~.PhaseMap` object which should be added to the data collection. projector: :class:`~.Projector` A :class:`~.Projector` object which should be added to the data collection. Returns ------- None """ self._log.debug('Calling append') assert isinstance(phasemap, PhaseMap) and isinstance(projector, Projector), \ 'Argument has to be a tuple of a PhaseMap and a Projector object!' assert projector.dim == self.dim, '3D dimensions must match!' assert phasemap.dim_uv == projector.dim_uv, 'Projection dimensions (dim_uv) must match!' self.phasemaps.append(phasemap) self.projectors.append(projector) def create_phasemaps(self, magdata): """Create a list of phasemaps with the projectors in the dataset for a given :class:`~.VectorData` object. Parameters ---------- magdata : :class:`~.VectorData` Magnetic distribution to which the projectors of the dataset should be applied. Returns ------- phasemaps : list of :class:`~.phasemap.PhaseMap` A list of the phase maps resulting from the projections specified in the dataset. """ self._log.debug('Calling create_phasemaps') phasemaps = [] for projector in self.projectors: mag_proj = projector(magdata) phasemap = self.phasemappers[projector.dim_uv](mag_proj) phasemap.mask = mag_proj.get_mask()[0, ...] phasemaps.append(phasemap) return phasemaps def set_Se_inv_block_diag(self, cov_list): """Set the Se_inv matrix as a block diagonal matrix Parameters ---------- cov_list: list of :class:`~numpy.ndarray` List of inverted covariance matrices (one for each projection). Returns ------- None """ self._log.debug('Calling set_Se_inv_block_diag') assert len(cov_list) == len(self.phasemaps), 'Needs one covariance matrix per phase map!' self.Se_inv = sparse.block_diag(cov_list).tocsr() def set_Se_inv_diag_with_conf(self, conf_list=None): """Set the Se_inv matrix as a block diagonal matrix from a list of confidence matrizes. Parameters ---------- conf_list: list of :class:`~numpy.ndarray` (optional) List of 2D confidence matrizes (one for each projection) which define trust regions. If not given this uses the confidence matrizes of the phase maps. Returns ------- None """ self._log.debug('Calling set_Se_inv_diag_with_conf') if conf_list is None: # if no confidence matrizes are given, extract from the phase maps! conf_list = [phasemap.confidence for phasemap in self.phasemaps] cov_list = [sparse.diags(c.ravel().astype(np.float32), 0) for c in conf_list] self.set_Se_inv_block_diag(cov_list) def set_3d_mask(self, mask_list=None): """Set the 3D mask from a list of 2D masks. Parameters ---------- mask_list: list of :class:`~numpy.ndarray` (optional) List of 2D masks, which represent the projections of the 3D mask. If not given this uses the mask matrizes of the phase maps. If just one phase map is present, the according mask is simply expanded to 3D and used directly. Returns ------- None """ self._log.debug('Calling set_3d_mask') if mask_list is None: # if no masks are given, extract from phase maps: mask_list = [phasemap.mask for phasemap in self.phasemaps] if len(mask_list) == 1: # just one phasemap --> 3D mask equals 2D mask self.mask = np.expand_dims(mask_list[0], axis=0) # z-dim is set to 1! else: # 3D mask has to be constructed from 2D masks: mask_3d_inv = np.zeros(self.dim) for i, projector in enumerate(self.projectors): mask_2d_inv = np.logical_not(self.phasemaps[i].mask.reshape(-1)) # inv. 2D mask # Add extrusion of inv. 2D mask: mask_3d_inv += projector.weight.T.dot(mask_2d_inv).reshape(self.dim) self.mask = np.where(mask_3d_inv == 0, True, False) def display_mask(self, ar_dens=1): """If it exists, display the 3D mask of the magnetization distribution. Parameters ---------- ar_dens: int (optional) Number defining the cell density which is plotted. A higher ar_dens number skips more arrows (a number of 2 plots every second arrow). Default is 1. Returns ------- None """ self._log.debug('Calling display_mask') if self.mask is not None: from mayavi import mlab zz, yy, xx = np.indices(self.dim) ad = ar_dens zz = zz[::ad, ::ad, ::ad].ravel() yy = yy[::ad, ::ad, ::ad].ravel() xx = xx[::ad, ::ad, ::ad].ravel() mask_vec = self.mask[::ad, ::ad, ::ad].ravel().astype(dtype=np.int) mlab.figure(size=(750, 700)) plot = mlab.points3d(xx, yy, zz, mask_vec, opacity=0.5, mode='cube', scale_factor=ar_dens) mlab.outline(plot) mlab.axes(plot) return plot def phase_plots(self, magdata=None, title='Phase Map', cmap='RdBu', limit=None, norm=None): """Display all phasemaps saved in the :class:`~.DataSet` as a colormesh. Parameters ---------- magdata : :class:`~.VectorData`, optional Magnetic distribution to which the projectors of the dataset should be applied. If not given, the phasemaps in the dataset are used. title : string, optional The main part of the title of the plots. The default is 'Phase Map'. Additional projector info is appended to this. cmap : string, optional The :class:`~matplotlib.colors.Colormap` which is used for the plots as a string. The default is 'RdBu'. limit : float, optional Plotlimit for the phase in both negative and positive direction (symmetric around 0). If not specified, the maximum amplitude of the phase is used. norm : :class:`~matplotlib.colors.Normalize` or subclass, optional Norm, which is used to determine the colors to encode the phase information. If not specified, :class:`~matplotlib.colors.Normalize` is automatically used. Returns ------- None """ self._log.debug('Calling phase_plots') if magdata is not None: phasemaps = self.create_phasemaps(magdata) else: phasemaps = self.phasemaps [phasemap.plot_phase('{} ({})'.format(title, self.projectors[i].get_info()), cmap=cmap, limit=limit, norm=norm) for (i, phasemap) in enumerate(phasemaps)] def combined_plots(self, magdata=None, title='Combined Plot', cmap='RdBu', limit=None, norm=None, gain='auto', interpolation='none', grad_encode='bright'): """Display all phasemaps and the resulting color coded holography images. Parameters ---------- magdata : :class:`~.VectorData`, optional Magnetic distribution to which the projectors of the dataset should be applied. If not given, the phasemaps in the dataset are used. title : string, optional The title of the plot. The default is 'Combined Plot'. cmap : string, optional The :class:`~matplotlib.colors.Colormap` which is used for the plot as a string. The default is 'RdBu'. limit : float, optional Plotlimit for the phase in both negative and positive direction (symmetric around 0). If not specified, the maximum amplitude of the phase is used. norm : :class:`~matplotlib.colors.Normalize` or subclass, optional Norm, which is used to determine the colors to encode the phase information. If not specified, :class:`~matplotlib.colors.Normalize` is automatically used. gain : float, optional The gain factor for determining the number of contour lines in the holographic contour map. The default is 1. interpolation : {'none, 'bilinear', 'cubic', 'nearest'}, optional Defines the interpolation method for the holographic contour map. No interpolation is used in the default case. grad_encode: {'bright', 'dark', 'color', 'none'}, optional Encoding mode of the phase gradient. 'none' produces a black-white image, 'color' just encodes the direction (without gradient strength), 'dark' modulates the gradient strength with a factor between 0 and 1 and 'bright' (which is the default) encodes the gradient strength with color saturation. Returns ------- None """ self._log.debug('Calling combined_plots') if magdata is not None: phasemaps = self.create_phasemaps(magdata) else: phasemaps = self.phasemaps for (i, phasemap) in enumerate(phasemaps): phasemap.plot_combined('{} ({})'.format(title, self.projectors[i].get_info()), cmap, limit, norm, gain, interpolation, grad_encode) plt.show()