Skip to content
Snippets Groups Projects

Compare revisions

Changes are shown as if the source revision was being merged into the target revision. Learn more about comparing revisions.

Source

Select target project
No results found

Target

Select target project
  • empyre/empyre
  • weber/empyre
  • wessels/empyre
  • bryan/empyre
4 results
Show changes
Showing
with 2426 additions and 289 deletions
#!python
# coding=utf-8
"""Setup for testing, building, distributing and installing the 'Pyramid'-package"""
import os
import re
import subprocess
import sys
from distutils.command.build import build
import numpy
from Cython.Distutils import build_ext
from setuptools import setup, find_packages
DISTNAME = 'pyramid'
DESCRIPTION = 'PYthon based Reconstruction Algorithm for MagnetIc Distributions'
MAINTAINER = 'Jan Caron'
MAINTAINER_EMAIL = 'j.caron@fz-juelich.de'
URL = ''
VERSION = '0.1.0-dev'
PYTHON_VERSION = (2, 7)
DEPENDENCIES = {'numpy': (1, 10), 'cython': (0, 23)}
LONG_DESCRIPTION = 'long description (TODO!)' # TODO: Long description!
def get_package_version(package):
"""Return the package version of the specified package.
Parameters
----------
package: basestring
Name of the package whic should be checked.
Returns
-------
version: tuple (N=3)
Version number as a tuple.
"""
version = []
for version_attr in ('version', 'VERSION', '__version__'):
if (hasattr(package, version_attr) and
isinstance(getattr(package, version_attr), str)):
version_info = getattr(package, version_attr, '')
for part in re.split('\D+', version_info):
try:
version.append(int(part))
except ValueError:
pass
return tuple(version)
def check_requirements():
"""Checks the requirements of the Pyramid package."""
if sys.version_info < PYTHON_VERSION:
raise SystemExit('You need Python version %d.%d or later.'
% PYTHON_VERSION)
for package_name, min_version in DEPENDENCIES.items():
dep_error = False
try:
package = __import__(package_name)
except ImportError:
dep_error = True
else:
package_version = get_package_version(package)
if min_version > package_version:
dep_error = True
if dep_error:
raise ImportError('You need `%s` version %d.%d or later.'
% ((package_name,) + min_version))
def hg_version():
"""Get the Mercurial reference identifier.
Returns
-------
hg_ref: basestring
The Mercurial reference identifier.
"""
try:
hg_rev = subprocess.check_output(['hg', 'id', '--id']).strip()
except:
hg_rev = "???"
return hg_rev
def write_version_py(filename='pyramid/version.py'):
"""Write the version.py file.
Parameters
----------
filename: basestring, optional
Write the version and hg_revision into the specified python file.
Defaults to 'pyramid/version.py'.
"""
version_string = '# -*- coding: utf-8 -*-\n' + \
'""""This file is generated automatically by the Pyramid `setup.py`"""\n' + \
'version = "{}"\n'.format(VERSION) + \
'hg_revision = "{}"\n'.format(hg_version())
with open(os.path.join(os.path.dirname(__file__), filename), 'w') as vfile:
vfile.write(version_string)
def get_files(rootdir):
"""Returns a list of .py-files inside rootdir.
Parameters
----------
rootdir: basestring
Root directory in which to search for ``.py``-files.
Returns
-------
filepaths: list
List of filepaths which were found.
"""
filepaths = []
for root, dirs, files in os.walk(rootdir):
for filename in files:
if filename.endswith('.py'):
filepaths.append(os.path.join(root, filename))
return filepaths
print('\n-------------------------------------------------------------------------------')
print('checking requirements')
check_requirements()
print('write version.py')
write_version_py()
setup(name=DISTNAME,
description=DESCRIPTION,
long_description=LONG_DESCRIPTION,
maintainer=MAINTAINER,
maintainer_email=MAINTAINER_EMAIL,
url=URL,
download_url=URL,
version=VERSION,
packages=find_packages(exclude=['tests']),
include_dirs=[numpy.get_include()],
requires=['numpy', 'scipy', 'matplotlib', 'Pillow',
'mayavi', 'pyfftw', 'hyperspy', 'nose'],
test_suite='nose.collector',
cmdclass={'build_ext': build_ext, 'build': build})
print('-------------------------------------------------------------------------------\n')
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""Subpackage containing functionality for visualisation of multidimensional fields."""
from . import fields
from . import io
from . import models
from . import reconstruct
from . import vis
from . import utils
__version__ = "0.3.4"
__git_revision__ = "undefined"
import logging
_log = logging.getLogger(__name__)
_log.info(f'Imported EMPyRe V-{__version__}')
del logging
__all__ = ['fields', 'io', 'models', 'reconstruct', 'vis', 'utils']
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""Subpackage containing container classes for multidimensional fields and ways to create them."""
from .field import *
from .shapes import *
from .vectors import *
__all__ = []
__all__.extend(field.__all__)
__all__.extend(shapes.__all__)
__all__.extend(vectors.__all__)
del field
del shapes
del vectors
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""This module provides a container class for multidimensional scalar or vector fields."""
import logging
from numbers import Number
from numpy.lib.mixins import NDArrayOperatorsMixin
import numpy as np
try:
# numpy >= 2
from numpy.lib.array_utils import normalize_axis_tuple
except ModuleNotFoundError:
# numpy < 2
from numpy.core.numeric import normalize_axis_tuple
from scipy import ndimage
from ..utils import Quaternion
__all__ = ['Field']
class Field(NDArrayOperatorsMixin):
"""Container class for storing multidimensional scalar or vector fields.
The `Field` class is a sophisticated wrapper around a multidimensional numpy array. The user can access the
underlying data via the `data` attribute, or by using the `numpy.asarray` function.
`Field` defines the `ufunc` interface for numpys vast library of universal functions. This includes all operator
definitions, i.e., you can add, subtract, multiply and devide `Field` objects element-wise. Note that for vector
fields, `Field` will handle all vector components separately and for ufuncs with two inputs, the other object will
be broadcast accordingly. It is therefore also possible to add (or multiply) vector and scalar fields, assuming
their dimensions `dim` match (their `shape` can't match, because it includes the number of components `ncomp` for
the vector field). For ufuncs that reduce the output shape (e.g. `numpy.sum`), if the `axis` parameter is set to
`None` (default), component axes for vector fields are kept (they can however explicitely reduced by including
them in the `axis` paremeter, e.g. by setting `axis = -1`).
`Field` objects can be indexed like numpy arrays and scalar fields (`vector=False`) behave as expected. A vector
field (`vector=True`) can be indexed by only the non-component indices (see `dim`) and the according components of
the specified point are returned as a tuple. Slicing with integers will return a `Field` object with reduced
dimensionality (or a scalar/tuple if all spatial dimensions are reduced) that also drops the associated `scales`
as needed. New axes (indexing with `None` or `numpy.newaxis`) is disabled because that would mean that an unknown
scale would need to be added (you can always create a new `Field` object with an appropriately prepared ndarray).
Some callables exposed by numpy's public API (e.g. `numpy.mean(...)`) will treat `Field` objects as if they
were identical to their underlying numpy array (by envoking the `__array__` function which just returns `data`).
The result often is a simple `numpy.ndarray` and not a `Field` object. Some functions (e.g. `clip`) are also defined
on `Field` as methods. They might behave differently and will return `Field` objects instead, so take care and
refer to their docstrings for further information!
# TODO: Too verbose? In documentation instead?
Attributes
----------
data: np.ndarray
The underlying data array of the field.
scale: tuple of float
Scaling along the dimensions of the underlying data.
vector: bool
True if the field is a vector field, False if it is a scalar field.
shape: tuple of ints
Shape of the underlying data. Includes the number of components as the first dimension if the field is a
vector field.
dim: tuple of ints
Dimensions of the underlying data. Only includes spatial dimensions, NOT the number of vector components!
(Use `ncomp` to get the number of components, if any, `shape` for the full shape of the underlying array).
ncomp: None or tuple of ints
Number of components if the field is a vector field (can be 2 or 3), None if it is a scalar field. The component
axis is always the last axis (index `-1`) of the underlying data array!
Notes
-----
See https://docs.scipy.org/doc/numpy/reference/arrays.classes.html for information about ndarray subclassing!
See https://docs.scipy.org/doc/numpy-1.13.0/neps/ufunc-overrides.html for information about __array_ufunc__!
See https://numpy.org/neps/nep-0018-array-function-protocol.html for information about __array_function__!
"""
_log = logging.getLogger(__name__ + '.Field')
@property
def data(self):
return self.__data
@property
def vector(self):
return self.__vector
@vector.setter
def vector(self, vector):
assert isinstance(vector, bool), 'vector has to be a boolean!'
self.__vector = vector
@property
def scale(self):
return self.__scale
@scale.setter
def scale(self, scale):
if isinstance(scale, Number): # Scale is the same for each dimension!
self.__scale = (float(scale),) * len(self.dim)
elif isinstance(scale, tuple):
ndim = len(self.dim)
assert len(scale) == ndim, f'Each of the {ndim} dimensions needs a scale, but {scale} was given!'
self.__scale = scale
else:
raise AssertionError(f'Scaling has to be a number or a tuple of numbers, was {scale} instead!')
@property
def shape(self):
return self.data.shape
@property
def dim(self):
if self.vector:
return self.shape[:-1]
else:
return self.shape
@property
def ncomp(self):
return self.shape[-1] if self.vector else 0
@property
def comp(self): # TODO: Function or property? Philosophical question?
# Return empty list for scalars (ncomp is 0) and a list of components as scalar fields for a vector field:
return [Field(self.data[..., i], self.scale, vector=False) for i in range(self.ncomp)]
@property
def amp(self): # TODO: Function or property? Philosophical question?
if self.vector:
amp = np.sqrt(np.sum([comp.data**2 for comp in self.comp], axis=0))
else:
amp = np.abs(self.data)
return Field(amp, self.scale, vector=False)
@property
def mask(self): # TODO: Function or property? Philosophical question?
return Field(np.where(np.asarray(self.amp) > 0, True, False), self.scale, vector=False)
def __init__(self, data, scale=1.0, vector=False):
self._log.debug('Calling __init__')
self.__data = data
self.vector = vector # Set vector before scale, because scale needs to know if vector (via calling dim)!
self.scale = scale
if self.vector:
assert self.ncomp in (2, 3), 'Only 2- or 3-component vector fields are supported!'
self._log.debug('Created ' + str(self))
def __repr__(self):
self._log.debug('Calling __repr__')
data_string = str(self.data) # String of JUST the data array, without metadata (compared to repr)!
return f'{self.__class__.__name__}(data={data_string}, scale={self.scale}, vector={self.vector})'
def __str__(self):
self._log.debug('Calling __repr__')
ncomp_string = f', ncomp={self.ncomp}' if self.vector else ''
return f'{self.__class__.__name__}(dim={self.dim}, scale={self.scale}, vector={self.vector}{ncomp_string})'
def __array__(self):
self._log.debug('Calling __array__')
return self.data
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
self._log.debug('Calling __array_ufunc__')
# outputs = kwargs.pop('out', ()) # TODO: Necessary?
outputs = kwargs.pop('out', (None,)*ufunc.nout) # Defaults to tuple of None (currently: nout=1 all the time)
outputs_arr = tuple([np.asarray(out) if isinstance(out, Field) else out for out in outputs])
if all(a is None for a in outputs_arr):
outputs_arr = None
# Cannot handle items that have __array_ufunc__ (other than our own).
for item in inputs + outputs:
if hasattr(item, '__array_ufunc__') and not isinstance(item, Field): # Something else with __array_ufunc__:
if type(item).__array_ufunc__ is not np.ndarray.__array_ufunc__: # Can't handle other overrides:
return NotImplemented
# TODO: BIGGEST NOTE HERE: Delegate work to ndarray.__array_ufunc__!
# TODO: For this to work, we have to make sure that we dispatch input as ndarrays, NOT Fields!
# Convert all Field inputs to simple ndarrays to avoid infinite recursion!
# ndarray.__array_ufunc__ delegates to the called ufunc method ONLY if all inputs and outputs are ndarrays
# (or have no __array_ufunc__ method, e.g. a scalar), so that's what we need to ensure here.:
# inputs = tuple([inp.view(np.ndarray) if isinstance(inp, Field) else inp for inp in inputs])
# TODO: possibly need to sort out which input (if two) is a Field (vector or scalar?), order matters?
# TODO: DOCUMENT: most things are same as in ndarrays, but if only one input is a vector field, try broadcast!
# TODO: for security, newaxis is not allowed (most other indexing works though), because scale would be unknown!
# 1 input (has to be a Field, otherwise we wouldn't be here):
self._log.debug(f'__array_ufunc__ inputs: {len(inputs)}')
self._log.info(f'ufunc: {ufunc}, method: {method}')
self._log.info(f'inputs: {inputs}')
self._log.info(f'outputs: {outputs}')
self._log.info(f'kwargs: {kwargs}')
if len(inputs) == 1:
field = inputs[0]
scale_new = field.scale
vector_new = field.vector
# Preprocess axis keyword if it exists:
axis = kwargs.get('axis', False) # Default must not be None, because None is a possible setting!
full_reduction = False
# for ufunc.outer and ufunc.at:
if axis is not False:
ax_full = tuple(range(len(field.dim))) # All axes (minus a possible component axis for vector Fields)!
ax_full_wc = tuple(range(len(field.dim) + 1)) # All axes WITH component axis (does not need to exist)!
axis = ax_full if axis is None else axis # This keeps possible components untouched if axis was None!
# axis=-1 reduces over the vector components, if they exist
# Takes care of pot. neg. indices, ensures tuple!
axis = normalize_axis_tuple(axis, len(field.shape))
kwargs['axis'] = axis # Put normalized axis back into kwargs!
if tuple(sorted(axis)) in (ax_full, ax_full_wc):
full_reduction = True # Full reduction (or reduction to just components) takes place:
if ax_full_wc[-1] in axis: # User explicitely wants component reduction (can only be true for vector):
vector_new = False # Force scalar field!
scale_new = tuple([s for i, s in enumerate(field.scale) if i not in axis]) # Drop axis from scale!
inputs_arr = np.asarray(field) # Convert inputs that are Fields to ndarrays to avoid recursion!
data_new = getattr(ufunc, method)(inputs_arr, out=outputs_arr, **kwargs)
if full_reduction: # Premature return because the result is no longer a Field:
return data_new
# More than 1 input (at least one has to be a Field, otherwise we wouldn't be here):
elif len(inputs) > 1:
is_field = [isinstance(inp, Field) for inp in inputs]
is_vector = [getattr(inp, 'vector', False) for inp in inputs]
# Determine scale:
if np.sum(is_field) > 1: # More than one input is a Field objects:
scales = [inp.scale for i, inp in enumerate(inputs) if is_field[i]] # Only takes scales of Field obj.!
scale_new = scales[0]
err_msg = f'Scales of all Field objects must match! Given scales: {scales}!'
if not all(scale == scale_new for scale in scales):
raise ValueError(err_msg)
else: # Only one input is a field, pick the scale of that one:
scale_new = inputs[np.argmax(is_field)].scale # argmax returns the index of first True!
# Determine vector:
vector_new = True if np.any(is_vector) else False # Output is vector field if any input is a vector field!
if np.sum(is_vector) > 1: # More than one input is a vector Field objects:
ncomps = [inp.ncomp for i, inp in enumerate(inputs) if is_vector[i]] # Only takes ncomp of v.-Fields!
err_msg = f'# of components of all Field objects must match! Given ncomps: {ncomps}!'
if not all(ncomp == ncomps[0] for ncomp in ncomps):
raise ValueError(err_msg)
# Append new axis at the end of non vector objects to broadcast to components:
if np.any(is_vector):
inputs = list(inputs)
for i, inp in enumerate(inputs):
if not is_vector[i] and not isinstance(inp, Number): # Numbers work for broadcasting anyway:
if len(np.asarray(inp).shape) == len(scale_new): # No. of dimensions w/o comp., have to match!
inputs[i] = np.asarray(inputs[i])[..., np.newaxis] # Broadcasting, try to cast as ndarray!
inputs = tuple(inputs)
# Convert inputs that are Fields to ndarrays to avoid recursion and determine data_new:
inputs_arr = tuple([np.asarray(inp) if isinstance(inp, Field) else inp for inp in inputs])
data_new = getattr(ufunc, method)(*inputs_arr, out=outputs_arr, **kwargs)
# Return results:
result = Field(data_new, scale_new, vector_new)
return result
def __getitem__(self, index):
self._log.debug('Calling __getitem__')
# Pre-processing index:
index = index if isinstance(index, tuple) else (index,) # Make sure item is a tuple!
if None in index:
raise Exception('Field does not support indexing with newaxis/None! Please cast as ndarray first!')
if len(index) < len(self.shape) and Ellipsis not in index: # Ellipsis is IMPLICIT at the end if index < dim:
index += (Ellipsis,)
if Ellipsis in index: # Expand Ellipsis (...) into slice(None) (:) to make iterating consistent:
index = list(index)
i = index.index(Ellipsis)
missing_dims = len(self.shape) - len(index) # Number of non-specified dimensions
index[i:i+1] = [slice(None)] * (missing_dims + 1) # +1 because at least Ellipsis is replaced!
index = tuple(index)
# Indexing with a scalar drops the dimension, indexing with slice always keeps the dimension:
index_scale = index[:-1] if self.vector else index # Disregard last index for vector fields (has no scale)!
scale_new = ()
for i, item in enumerate(index_scale):
if isinstance(item, slice): # Indexing with slice keeps the dimension and therefore the scale:
scale_new += (self.scale[i],)
# Get data with classic indexing from underlying data array:
data_new = self.data[index]
# Determine vector state of output:
vector_new = self.vector
if self.vector and isinstance(index[-1], Number): # For vector fields if last index (component) is dropped:
vector_new = False
# Return:
if not scale_new: # scale_new=(), i.e. full reduction of all dimensions (not regarding possible vector comp.):
if isinstance(data_new, Number): # full reduction:
return data_new
else: # Only important for vector fields:
return tuple(data_new) # return single vector as tuple
else: # Return Field object
return Field(data_new, scale_new, vector=vector_new)
@classmethod
def from_scalar_fields(cls, scalar_list):
"""Create a vector `Field` object from a list of scalar `Fields`.
Parameters
----------
scalar_list : list
List of scalar `Field` objects (`vector=False`).
Returns
-------
vector_field: `Field`
A vector `Field` object containing the input scalar fields as components.
"""
cls._log.debug('Calling from_scalar_fields')
assert len(scalar_list) in (2, 3), 'Needs two or three scalar fields as components for vector field!'
assert all(isinstance(item, Field) for item in scalar_list), 'All items have to be Field objects!'
assert all(not item.vector for item in scalar_list), 'All items have to be scalar fields!'
assert all(item.scale == scalar_list[0].scale for item in scalar_list), 'Scales of fields must match!'
return cls(np.stack(scalar_list, axis=-1), scalar_list[0].scale, vector=True)
@classmethod
def from_signal(cls, signal, scale=None, vector=None, comp_pos=-1):
"""Convert a :class:`~hyperspy.signals.Signal` object to a :class:`~.Field` object.
Parameters
----------
signal: :class:`~hyperspy.signals.Signal`
The :class:`~hyperspy.signals.Signal` object which should be converted to Field.
Returns
-------
field: :class:`~.Field`
A :class:`~.Field` object containing the loaded data.
scale: tuple of float, optional
Scaling along the dimensions of the underlying data. If not provided, will be read from the axes_manager.
vector: boolean, optional
If set to True, forces the signal to be interpreted as a vector field. EMPyRe will check if the first axis
is named 'vector components' (EMPyRe saves vector fields like this). If this is the case, vector will be
automatically set to True and the signal will also be interpreted as a vector field.
comp_pos: int, optoinal
The index of the axis containing the vector components (if `vector=True`). EMPyRe needs this to be the last
axis (index `-1`, which is the default). In case another position is given, the vector component will be
moved to the last axis. Old Pyramid files will have this axis at index `0`, so use this for backwards
compatibilty.
Notes
-----
Signals recquire the hyperspy package!
"""
cls._log.debug('Calling from_signal')
data = signal.data
if vector and comp_pos != -1: # component axis should be last, but is currently first -> roll to the end:
data = np.moveaxis(data, source=comp_pos, destination=-1)
if vector is None: # Automatic detection:
vector = True if signal.axes_manager[0].name == 'vector components' else False
if scale is None: # If not provided, try to read from axes_manager, one less axis if vector!:
scale = tuple([signal.axes_manager[i].scale for i in range(len(data.shape) - vector)])
return cls(data, scale, vector)
def to_signal(self):
"""Convert :class:`~.Field` data into a HyperSpy signal.
Returns
-------
signal: :class:`~hyperspy.signals.Signal`
Representation of the :class:`~.Field` object as a HyperSpy Signal.
Notes
-----
This method recquires the hyperspy package!
"""
self._log.debug('Calling to_signal')
try: # Try importing HyperSpy:
import hyperspy.api as hs
except ImportError:
self._log.error('This method recquires the hyperspy package!')
return
# Create signal:
signal = hs.signals.BaseSignal(self.data) # All axes are signal axes!
# Set axes:
if self.vector:
signal.axes_manager[0].name = 'vector components'
for i in range(len(self.dim)):
ax = i+1 if self.vector else i # take component axis into account if vector!
num = ['x', 'y', 'z'][i] if len(self.dim) <= 3 else i
signal.axes_manager[ax].name = f'axis {num}'
signal.axes_manager[ax].scale = self.scale[i]
signal.axes_manager[ax].units = 'nm'
signal.metadata.Signal.title = f"EMPyRe {'vector' if self.vector else 'scalar'} Field"
return signal
def copy(self):
"""Returns a copy of the :class:`~.Field` object.
Returns
-------
field: :class:`~.Field`
A copy of the :class:`~.Field`.
"""
self._log.debug('Calling copy')
return Field(self.data.copy(), self.scale, self.vector)
def rotate(self, angle, axis='z', **kwargs):
"""Rotate the :class:`~.Field`, based on :meth:`~scipy.ndimage.rotate`.
Rotation direction is from the first towards the second axis. Works for 2D and 3D Fields.
Parameters
----------
angle : float
The rotation angle in degrees.
axis: {'x', 'y', 'z'}, optional
The axis around which the vector field is rotated. Default is 'z'. Ignored for 2D Fields.
Returns
-------
field: :class:`~.Field`
The rotated :class:`~.Field`.
Notes
-----
All additional kwargs are passed through to :meth:`~scipy.ndimage.rotate`.
The `reshape` parameter, controlling if the output shape is adapted so that the input array is contained
completely in the output is False per default, contrary to :meth:`~scipy.ndimage.rotate`,
where it is True.
"""
self._log.debug('Calling rotate')
assert len(self.dim) in (2, 3), 'rotate is currently only defined for 2D and 3D Fields!'
kwargs.setdefault('reshape', False) # Default here is no reshaping!
if len(self.dim) == 2: # For 2D, there are only 2 axes:
axis = 'z' # Overwrite potential argument if 2D!
axes = (0, 1) # y and x
else: # 3D case:
# order of axes is important for permutation, to get positive levi_civita
axes = {'x': (0, 1), 'y': (2, 0), 'z': (1, 2)}[axis]
sc_0, sc_1 = self.scale[axes[0]], self.scale[axes[1]]
assert sc_0 == sc_1, f'rotate needs the scales in the rotation plane to be equal (they are {sc_0} & {sc_1})!'
np_angle = angle
if axis in ('x', 'z'):
np_angle *= -1
if not self.vector: # Scalar field:
data_new = ndimage.rotate(self.data, np_angle, axes=axes, **kwargs)
else: # Vector field:
# Rotate coordinate system:
comps = [np.asarray(comp) for comp in self.comp]
if self.ncomp == 3:
data_new = np.stack([ndimage.rotate(c, np_angle, axes=axes, **kwargs) for c in comps], axis=-1)
# Up till now, only the coordinates are rotated, now we need to rotate the vectors inside the voxels:
rot_axis = {'x': 2, 'y': 1, 'z': 0}[axis]
i, j, k = axes[0], axes[1], rot_axis # next line only works if i != j != k
levi_civita = int((j-i) * (k-i) * (k-j) / (np.abs(j-i) * np.abs(k-i) * np.abs(k-j)))
# Create Quaternion, note that they have (x, y, z) order instead of (z, y, x):
quat_axis = tuple([levi_civita if i == rot_axis else 0 for i in (2, 1, 0)])
quat = Quaternion.from_axisangle(quat_axis, np.deg2rad(angle))
# T needed b.c. ordering!
data_new = quat.matrix.dot(data_new.reshape((-1, 3)).T).T.reshape(data_new.shape)
elif self.ncomp == 2:
u_comp, v_comp = comps
u_rot = ndimage.rotate(u_comp, np_angle, axes=axes, **kwargs)
v_rot = ndimage.rotate(v_comp, np_angle, axes=axes, **kwargs)
# Up till now, only the coordinates are rotated, now we need to rotate the vectors inside the voxels:
ang_rad = np.deg2rad(angle)
u_mix = np.cos(ang_rad)*u_rot - np.sin(ang_rad)*v_rot
v_mix = np.sin(ang_rad)*u_rot + np.cos(ang_rad)*v_rot
data_new = np.stack((u_mix, v_mix), axis=-1)
else:
raise ValueError('rotate currently only works for 2- or 3-component vector fields!')
return Field(data_new, self.scale, self.vector)
def rot90(self, k=1, axis='z'):
"""Rotate the :class:`~.Field` 90° around the specified axis (right hand rotation).
Parameters
----------
k : integer
Number of times the array is rotated by 90 degrees.
axis: {'x', 'y', 'z'}, optional
The axis around which the vector field is rotated. Default is 'z'. Ignored for 2D Fields.
Returns
-------
field: :class:`~.Field`
The rotated :class:`~.Field`.
"""
self._log.debug('Calling rot90')
assert axis in ('x', 'y', 'z'), "Wrong input! 'x', 'y', 'z' allowed!"
assert len(self.dim) in (2, 3), 'rotate is currently only defined for 2D and 3D Fields!'
if len(self.dim) == 2: # For 2D, there are only 2 axes:
axis = 'z' # Overwrite potential argument if 2D!
axes = (0, 1) # y and x
else: # 3D case:
axes = {'x': (0, 1), 'y': (0, 2), 'z': (1, 2)}[axis]
sc_0, sc_1 = self.scale[axes[0]], self.scale[axes[1]]
assert sc_0 == sc_1, f'rot90 needs the scales in the rotation plane to be equal (they are {sc_0} & {sc_1})!'
# TODO: Later on, rotation could also flip the scale (not implemented here, yet)!
if axis != 'y':
k = -k # rotation is inverted if around x or z due to y flip compared to numpy
if not self.vector: # Scalar Field:
data_new = np.rot90(self.data, k=k, axes=axes).copy()
else: # Vector Field:
if len(self.dim) == 3: # 3D:
assert self.ncomp == 3, 'rot90 currently only works for vector fields with 3 components in 3D!'
comp_x, comp_y, comp_z = self.comp
# reference:
# https://en.wikipedia.org/wiki/Rotation_matrix#In_three_dimensions
if axis == 'x': # RotMatrix for 90°: [[1, 0, 0], [0, 0, -1], [0, 1, 0]]
comp_x_rot = np.rot90(comp_x, k=k, axes=axes)
comp_y_rot = -np.rot90(comp_z, k=k, axes=axes)
comp_z_rot = np.rot90(comp_y, k=k, axes=axes)
elif axis == 'y': # RotMatrix for 90°: [[0, 0, 1], [0, 1, 0], [-1, 0, 0]]
comp_x_rot = np.rot90(comp_z, k=k, axes=axes)
comp_y_rot = np.rot90(comp_y, k=k, axes=axes)
comp_z_rot = -np.rot90(comp_x, k=k, axes=axes)
elif axis == 'z': # RotMatrix for 90°: [[0, -1, 0], [1, 0, 0], [0, 0, 1]]
comp_x_rot = -np.rot90(comp_y, k=k, axes=axes)
comp_y_rot = np.rot90(comp_x, k=k, axes=axes)
comp_z_rot = np.rot90(comp_z, k=k, axes=axes)
data_new = np.stack((comp_x_rot, comp_y_rot, comp_z_rot), axis=-1)
if len(self.dim) == 2: # 2D:
assert self.ncomp == 2, 'rot90 currently only works for vector fields with 2 components in 2D!'
comp_x, comp_y = self.comp
comp_x_rot = -np.rot90(comp_y, k=k, axes=axes)
comp_y_rot = np.rot90(comp_x, k=k, axes=axes)
data_new = np.stack((comp_x_rot, comp_y_rot), axis=-1)
# Return result:
return Field(data_new, self.scale, self.vector)
def get_vector(self, mask=None):
"""Returns the field as a vector, specified by a mask.
Parameters
----------
mask : :class:`~numpy.ndarray` (boolean)
Masks the pixels from which the entries should be taken. Must be a numpy array for indexing to work!
Returns
-------
vector : :class:`~numpy.ndarray` (N=1)
The vector containing the field of the specified pixels. If the field is a vector field, components are
first vectorised, then concatenated!
"""
self._log.debug('Calling get_vector')
if mask is None: # If not given, take full data:
mask = np.full(self.dim, True)
if self.vector: # Vector field:
return np.ravel([comp.data[mask] for comp in self.comp])
else: # Scalar field:
return np.ravel(self.data[mask])
def set_vector(self, vector, mask=None):
"""Set the field of the masked pixels to the values specified by `vector`.
Parameters
----------
mask : :class:`~numpy.ndarray` (boolean), optional
Masks the pixels from which the field should be taken.
vector : :class:`~numpy.ndarray` (N=1)
The vector containing the field of the specified pixels.
Returns
-------
None
"""
self._log.debug('Calling set_vector')
if mask is None: # If not given, set full data:
mask = np.full(self.dim, True)
if self.vector: # Vector field:
assert np.size(vector) % self.ncomp == 0, 'Vector has to contain all components for every pixel!'
count = np.size(vector) // self.ncomp
for i in range(self.ncomp):
sl = slice(i*count, (i+1)*count)
self.data[..., i][mask] = vector[sl]
else: # Scalar field:
self.data[mask] = vector
def squeeze(self):
"""Squeeze the `Field` object to remove single-dimensional entries in the shape.
Returns
-------
field: `Field`
Squeezed `Field` object. Note that scales associated with squeezed dimensions are also dropped.
Notes
-----
Also works via `numpy.squeeze(field)`, because `numpy.squeeze` searches for a local implementation first and
then uses `_wrapit` to envoke this function here!
"""
self._log.debug('Calling squeeze')
squeezed_indices = np.flatnonzero(np.asarray(self.dim) == 1)
squeezed_data = np.squeeze(self.data)
if squeezed_indices:
self._log.info(f'The following indices were squeezed: {squeezed_indices}')
squeezed_scale = tuple([self.scale[i] for i in range(len(self.dim)) if i not in squeezed_indices])
return Field(squeezed_data, squeezed_scale, self.vector)
def pad(self, pad_width, mode='constant', **kwargs):
"""Pad the `Field` object and increase the size of the underlying array.
Parameters
----------
pad_width : {sequence, array_like, int}
Number of values padded to the edges of each axis. Can be a single number for all, one number per axis or
a tuple `(before, after)` for each axis for finer control.
mode : str, optional
Padding mode (see `numpy.pad` for all options), by default 'constant', which pads with zeros.
Returns
-------
field: `Field`
The padded `Field` object.
"""
if isinstance(pad_width, Number): # Paddding is the same for each dimension (make sure it is a tuple)!
pad_width = (pad_width,) * len(self.dim)
pad_width = [(p, p) if isinstance(p, Number) else p for p in pad_width]
if self.vector: # Append zeros to padding, so component axis stays as is:
pad_width = pad_width + [(0, 0)]
data_new = np.pad(self.data, pad_width, mode, **kwargs)
return Field(data_new, self.scale, self.vector)
def bin(self, n):
"""Bins data of the `Field` to decrease the size of the underlying array by averaging over a number of values.
Parameters
----------
n : {sequence, array_like, int}
Number of entries along each axis over which the average is taken. Can be a single integer for all axes or a
list, specifying the number of entries over which to average for each individual axis.
Returns
-------
field: `Field`
The binned `Field` object.
Notes
-----
Padding takes place before binning to ensure the dimensions are multiples of `n`. The padding mode is `edge`.
"""
self._log.debug('Calling bin')
assert isinstance(n, (int, tuple)), 'n must be a positive integer or a tuple of positive integers!'
if isinstance(n, Number): # Binning is the same for each dimension (make sure it is a tuple)!
n = (n,) * len(self.dim)
assert all([n_i >= 0 for n_i in n]), 'All entries of n must be positive integers!'
# Pad if necessary (use padded 'field' from here on), formula for clarity: (n - dim % n) % n
pad_width = [(0, (n[i] - self.dim[i] % n[i]) % n[i]) for i in range(len(self.dim))]
field = self.pad(pad_width, mode='edge')
# Create new shape used for binning (mean over every second axis will be taken):
bin_shape = list(np.ravel([(field.dim[i]//n[i], n[i]) for i in range(len(field.dim))]))
mean_axes = np.arange(1, 2*len(field.dim), 2) # every 2nd axis!
if self.vector: # Vector field:
bin_shape += [field.ncomp] # Append component axis (they stay unchanged)
# Bin data and scale accordingly:
data_new = field.data.reshape(bin_shape).mean(axis=tuple(mean_axes))
scale_new = tuple([field.scale[i] * n[i] for i in range(len(field.dim))])
return Field(data_new, scale_new, self.vector)
def zoom(self, zoom, **kwargs):
"""Wrapper for the `scipy.ndimage.zoom` function.
Parameters
----------
zoom : float or sequence
Zoom factor along the axes. If a float, `zoom` is the same for each axis. If a sequence, `zoom` needs to
contain one value for each axis.
Returns
-------
field: `Field`
The zoomed in `Field` object.
Notes
-----
As in `scipy.ndimage.zoom`, a spline order can be specified, which defaults to 3.
"""
self._log.debug('Calling zoom')
if not self.vector: # Scalar field:
data_new = ndimage.zoom(self.data, zoom, **kwargs)
else: # Vector field:
comps = [np.asarray(comp) for comp in self.comp]
data_new = np.stack([ndimage.zoom(comp, zoom, **kwargs) for comp in comps], axis=-1)
if isinstance(zoom, Number): # Zoom is the same for each dimension!
zoom = (zoom,) * len(self.dim)
scale_new = tuple([self.scale[i]/z for i, z in enumerate(zoom)])
return Field(data_new, scale_new, self.vector)
def flip(self, axis=None, **kwargs):
"""Returns a `Field` with entries flipped along specified axes.
Parameters
----------
axis : tuple or None, optional
Axes whose entries will be flipped, by default None.
"""
self._log.debug('Calling flip')
if self.vector and axis is None:
axis = tuple(range(len(self.dim)))
axis = normalize_axis_tuple(axis, len(self.shape)) # Make sure, axis is a tuple!
data_new = np.flip(self.data, axis, **kwargs).copy() # Only flips space, not component direction!
if self.vector:
flip_vec = [
-1 if i in axis else 1
for i in reversed(range(self.ncomp))
]
data_new *= flip_vec
return Field(data_new, self.scale, self.vector)
def gradient(self):
"""Returns the gradient of an N-dimensional scalar `Field`. Wrapper around the according numpy function.
Returns
-------
gradients: ndarray or list of ndarray
A set of ndarrays (or a single ndarray for 1D input), corresponding to the derivatives of the field with
respect to each dimension.
Notes
-----
The field is implicitely squeezed before the gradient is calculated!
"""
self._log.debug('Calling gradient')
assert not self.vector, 'Gradient can only be computed from scalar fields!'
squeezed_field = self.squeeze() # Gradient along dimension of length 1 does not work!
gradients = np.gradient(np.asarray(squeezed_field), *squeezed_field.scale)
if len(squeezed_field.dim) == 1: # Only one gradient!
return Field(gradients, squeezed_field.scale, vector=False)
else: # Multidimensional gradient (flip component order with [::-1], so that e.g x/y/z instead of z/y/x):
return Field(np.stack(gradients[::-1], axis=-1), squeezed_field.scale, vector=True)
def curl(self):
"""Returns the curl of an N-dimensional `Field`.
Returns
-------
field: `Field`
The curl/rotation.
Notes
-----
The calculation depends on the input:
3 dimensions, 3 components: Calculates the full 3D rotational vector field!
2 dimensions, 2 components: Calculates the out-of-plane component of the curl as a 2D scalar field!
2 dimensions, scalar: Calculates the planar rotation as a 2D vector field!
"""
self._log.debug('Calling curl')
squeezed_field = self.squeeze()
if len(squeezed_field.dim) == 3: # 3 dimensions:
if squeezed_field.ncomp == 3: # 3 component vector field (standard case):
self._log.debug('input: 3 dimensions, 3 components!')
field_x, field_y, field_z = squeezed_field.comp
gradx_x, grady_x, gradz_x = field_x.gradient().comp
gradx_y, grady_y, gradz_y = field_y.gradient().comp
gradx_z, grady_z, gradz_z = field_z.gradient().comp
curl_x = grady_z - gradz_y
curl_y = gradz_x - gradx_z
curl_z = gradx_y - grady_x
return Field.from_scalar_fields([curl_x, curl_y, curl_z])
else:
raise AssertionError('Can only handle 3 component vector fields in 3D!')
elif len(squeezed_field.dim) == 2: # 2 dimensions (tricky, usually not hardly defined):
if squeezed_field.ncomp == 2: # 2 component vector field (return perpendicular component as scalar field):
self._log.debug('input: 2 dimensions, 2 components!')
field_x, field_y = squeezed_field.comp
gradx_x, grady_x = field_x.gradient().comp
gradx_y, grady_y = field_y.gradient().comp
return gradx_y - grady_x
elif not squeezed_field.vector: # scalar field (return planar components as 2D vector field):
self._log.debug('input: 3 dimensions, scalar field!')
gradx, grady = squeezed_field.gradient().comp
curl_x = grady
curl_y = -gradx
return Field.from_scalar_fields([curl_x, curl_y])
else:
raise AssertionError('Can only handle 3 component vector or scalar fields in 2D!')
else:
raise AssertionError('Can only handle 3D or 2D cases (see documentation for specifics)!')
def clip(self, vmin=None, vmax=None, sigma=None, mask=None):
"""Clip (limit) the values in an array. For vector fields, this will take the amplitude into account.
Parameters
----------
vmin : float, optional
Mimimum value, by default None. Is ignored for vector fields. Will overwrite values found via `sigma` or
`mask`.
vmax : float, optional
Maximum value, by default None. Will overwrite values found via `sigma` or `mask`.
sigma : float, optional
Defines a range in standard deviations, that results in a boolean mask that excludes outliers, by default
None. E.g. `sigma=2` will mark points within the 5% highest amplitude as outliers. `vmin` and `vmax` will be
searched in the remaining region. Is logically combined with `mask` if both are set.
mask : ndarray, optional
Boolean array that directly describes where to search for `vmin` and `vmax`, by default None. Is logically
combined with the mask from `sigma` if both are set.
Returns
-------
field: `Field`
The clipped `Field`.
Notes
-----
In contrast to the corresponding numpy function, `vmin` and `vmax` can both be `None` due to the alternative
clipping strategies employed here.
"""
self._log.debug('Calling clip')
# Get a scalar indicator array for where clipping needs to happen:
if self.vector: # For vector fields, it is the amplitude of the data:
indicator = self.amp.data
else: # For scalar fields this is the data itself:
indicator = self.data
if mask is None: # If no mask is set yet, default to True everywhere:
mask = np.full(self.dim, True)
if sigma is not None: # Mark outliers that are outside `sigma` standard deviations:
sigma_mask = (indicator - indicator.mean()) < (sigma * indicator.std())
mask = np.logical_and(mask, sigma_mask)
# Determine vmin and vmax if they are not set by the user:
indicator_masked = np.where(mask, indicator, np.nan)
if vmin is None:
vmin = np.nanmin(indicator_masked)
if vmax is None:
vmax = np.nanmax(indicator_masked)
if self.vector: # Vector fields need to scale components according to masked amplitude:
# Only vmax is important for vectors! mask_vec broadcast to components!
mask_vec = (indicator <= vmax)[..., None]
data_new = np.where(mask_vec, self.data, vmax * self.data/indicator[..., None]) # Scale outliers to vmax!
else: # For scalar fields, just delegate to the numpy function:
data_new = np.clip(self.data, vmin, vmax)
return Field(data_new, self.scale, self.vector)
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
import logging
import numpy as np
from .field import Field
__all__ = ['create_shape_slab', 'create_shape_disc', 'create_shape_ellipse', 'create_shape_ellipsoid',
'create_shape_sphere', 'create_shape_filament', 'create_shape_voxel']
_log = logging.getLogger(__name__)
# TODO: TEST!!!
def create_shape_slab(dim, center=None, width=None, scale=1.0):
"""Creates a Field object with the shape of a slab as a scalar field in arbitrary dimensions.
Attributes
----------
dim : tuple
The dimensions of the grid.
center : tuple, optional
The center of the slab in pixel coordinates.
width : tuple, optional
The width of the slab in pixel coordinates.
scale: tuple of float
Scaling along the dimensions of the underlying data.
"""
_log.debug('Calling __init__')
if center is None:
center = tuple([d/2 for d in dim])
if width is None:
width = tuple([d/2 for d in dim])
assert len(dim) == len(center) == len(width), 'Parameters dim, center and width must have the same dimensions!'
data = np.zeros(dim)
bounds = ()
for i in range(len(dim)):
start = int(np.floor(center[i] - width[i]/2))
stop = int(np.ceil(center[i] + width[i]/2))
bounds += (slice(start, stop),)
data[bounds] = 1
return Field(data=data, scale=scale, vector=False)
def create_shape_disc(dim, center=None, radius=None, height=None, axis=0, scale=1.0):
"""Creates a Field object with the shape of a cylindrical disc in 2D or 3D.
Attributes
----------
dim : tuple
The dimensions of the grid.
center : tuple, optional
The center of the disc in pixel coordinates.
radius : float, optional
The radius of the disc in pixel coordinates.
height : float, optional
The height of the disc in pixel coordinates. Unused if only 2D.
axis : int, optional
The orientation of the discs orthogonal axis. Only used in 3D case with z-axis as default.
scale: tuple of float
Scaling along the dimensions of the underlying data.
"""
_log.debug('Calling __init__')
assert len(dim) in (2, 3), 'Disc can only be build in 2 or 3 dimensions!'
# Find indices of the disc plane axes:
idx_uv = [0, 1, 2]
if len(dim) == 3: # 3D:
idx_uv.remove(axis)
else: # 2D:
idx_uv.remove(2)
# Find default values:
if center is None:
center = tuple([d/2 for d in dim])
if radius is None:
radius = np.max((dim[idx_uv[0]], dim[idx_uv[1]])) / 4
if height is None and len(dim) == 3: # only used for 3D!
height = dim[axis] / 2
assert height > 0, 'Height has to be a positive scalar value!'
assert len(dim) == len(center), 'Parameters dim and center must have the same dimensions!'
assert radius > 0, 'Radius has to be a positive scalar value!'
coords = np.indices(dim) + 0.5 # 0.5 to get to pixel/voxel center!
coords = coords - np.asarray(center)[(slice(None),) + (None,)*len(dim)] # [:, None, None, None]
data = np.where(np.hypot(coords[idx_uv[0]], coords[idx_uv[1]]) <= radius, 1, 0)
if len(dim) == 3: # 3D: Implement bounds above and below the disc:
height_shape = np.zeros_like(data)
bounds = [slice(None)] * 3 # i.e.: [:, :, :]
start = int(np.floor(center[axis] - height/2))
stop = int(np.ceil(center[axis] + height/2))
bounds[axis] = slice(start, stop) # replace with actual bounds along disc symmetry axis
height_shape[tuple(bounds)] = 1
data *= height_shape
return Field(data=data, scale=scale, vector=False)
def create_shape_ellipse(dim, center=None, width=None, height=None, axis=0, scale=1.0):
"""Creates a Field object with the shape of an ellipse in 2D or 3D.
Attributes
----------
dim : tuple
The dimensions of the grid.
center : tuple, optional
The center of the ellipse in pixel coordinates.
width : tuple, optional
The two half axes of the ellipse in pixel coordinates.
height : float, optional
The height of the ellipse in pixel coordinates. Unused if only 2D.
axis : int, optional
The orientation of the ellipses orthogonal axis. Only used in 3D case with z-axis as default.
scale: tuple of float
Scaling along the dimensions of the underlying data.
"""
_log.debug('Calling __init__')
assert len(dim) in (2, 3), 'Ellipse can only be build in 2 or 3 dimensions!'
# Find indices of the disc plane axes:
idx_uv = [0, 1, 2]
if len(dim) == 3: # 3D:
idx_uv.remove(axis)
else: # 2D:
idx_uv.remove(2)
# Find default values:
if center is None:
center = tuple([d/2 for d in dim])
if width is None:
dim_uv = (dim[idx_uv[0]], dim[idx_uv[1]])
width = (np.max(dim_uv)*1/3, np.min(dim_uv)*2/3)
if height is None and len(dim) == 3: # only used for 3D!
height = dim[axis] / 2
assert len(dim) == len(center), 'Parameters dim and center must have the same dimensions!'
assert len(width) == 2, 'Width has to contain the two half axes!'
coords = np.indices(dim) + 0.5 # 0.5 to get to pixel/voxel center!
coords = coords - np.asarray(center)[(slice(None),) + (None,)*len(dim)] # [:, None, None, None]
distance = np.hypot(coords[idx_uv[1]] / (width[1]/2), coords[idx_uv[0]] / (width[0]/2))
data = np.where(distance <= 1, 1, 0)
if len(dim) == 3: # 3D: Implement bounds above and below the disc:
height_shape = np.zeros_like(data)
bounds = [slice(None)] * 3 # i.e.: [:, :, :]
start = int(np.floor(center[axis] - height/2))
stop = int(np.ceil(center[axis] + height/2))
bounds[axis] = slice(start, stop) # replace with actual bounds along disc symmetry axis
height_shape[tuple(bounds)] = 1
data *= height_shape
return Field(data=data, scale=scale, vector=False)
def create_shape_ellipsoid(dim, center=None, width=None, scale=1.0):
"""Creates a Field object with the shape of an ellipsoid in arbitrary dimensions.
Attributes
----------
dim : tuple
The dimensions of the grid.
center : tuple, optional
The center of the ellipsoid in pixel coordinates.
width : tuple, optional
The half axes of the ellipsoid in pixel coordinates.
scale: tuple of float
Scaling along the dimensions of the underlying data.
"""
_log.debug('Calling __init__')
if center is None:
center = tuple([d/2 for d in dim])
if width is None:
width = tuple([d/2 for d in dim])
assert len(dim) == len(center) == len(width), 'Parameters dim, center and width must have the same dimensions!'
coords = np.indices(dim) + 0.5 # 0.5 to get to pixel/voxel center!
coords = coords - np.asarray(center)[(slice(None),) + (None,)*len(dim)] # [:, None, None, None]
distance = np.sqrt([(coords[i] / (width[i]/2))**2 for i in range(len(dim))])
data = np.where(distance <= 1, 1, 0)
return Field(data=data, scale=scale, vector=False)
def create_shape_sphere(dim, center=None, radius=None, scale=1.0):
"""Creates a Field object with the shape of a sphere in arbitrary dimensions.
Attributes
----------
dim : tuple
The dimensions of the grid.
center : tuple, optional
The center of the sphere in pixel coordinates.
width : tuple, optional
The half axes of the sphere in pixel coordinates.
scale: tuple of float
Scaling along the dimensions of the underlying data.
"""
_log.debug('Calling __init__')
if center is None:
center = tuple([d/2 for d in dim])
if radius is None:
radius = np.max(dim) / 4
assert len(dim) == len(center), 'Parameters dim and center must have the same dimensions!'
assert radius > 0, 'Radius has to be a positive scalar value!'
coords = np.indices(dim) + 0.5 # 0.5 to get to pixel/voxel center!
coords = coords - np.asarray(center)[(slice(None),) + (None,)*len(dim)] # [:, None, None, None]
distance = np.sqrt([coords[i]**2 for i in range(len(dim))])
data = np.where(distance <= radius, 1, 0)
return Field(data=data, scale=scale, vector=False)
def create_shape_filament(dim, pos=None, axis=0, scale=1.0):
"""Creates a Field object with the shape of a filament in arbitrary dimension.
Parameters
----------
dim : tuple
The dimensions of the grid.
pos : tuple, optional
The position of the filament in pixel coordinates. Has to be a tuple of len(dim) - 1 and denotes the
index positions along all axes aside from the specified `axis` along which the filament is placed.
axis : int, optional
The orientation of the filament axis. Defaults to the first axis.
scale: tuple of float
Scaling along the dimensions of the underlying data.
"""
_log.debug('Calling __init__')
assert len(dim) > 1, 'Only usable for multidimensional Fields (at least 2 dimensions)!'
if pos is None:
pos = tuple([d/2 for d in dim])
assert len(dim) == len(pos)-1, 'Position has to specify one less coordinates than dimensions!'
data = np.zeros(dim)
index = list(pos)
index.insert(axis, slice(None)) # [:] for the filament axis! pos everywhere else!
data[tuple(index)] = 1
return Field(data=data, scale=scale, vector=False)
def create_shape_voxel(dim, pos=None, scale=1.0):
"""Creates a Field object with the shape of a single voxel in arbitrary dimension.
Parameters
----------
dim : tuple
The dimensions of the grid.
pos : tuple, optional
The position of the voxel.
scale: tuple of float
Scaling along the dimensions of the underlying data.
"""
_log.debug('Calling __init__')
assert len(dim) > 1, 'Only usable for multidimensional Fields (at least 2 dimensions)!'
if pos is None:
pos = tuple([d/2 for d in dim])
assert len(dim) == len(pos), 'Parameters dim and pos must have the same dimensions!'
data = np.zeros(dim)
data[pos] = 1
return Field(data=data, scale=scale, vector=False)
# -*- coding: utf-8 -*-
# Copyright 2016 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
import logging
from numbers import Number
import numpy as np
from .field import Field
__all__ = ['create_vector_homog', 'create_vector_vortex', 'create_vector_skyrmion', 'create_vector_singularity']
_log = logging.getLogger(__name__)
def create_vector_homog(dim, phi=0, theta=None, scale=1.0):
"""Field subclass implementing a homogeneous vector field with 2 or 3 components in 2 or 3 dimensions.
Attributes
----------
dim : tuple
The dimensions of the grid.
phi : float
The azimuthal angle. The default is 0, i.e., the vectors point in x direction.
theta : float, optional
The polar angle. If None (default), only two components will be created (corresponds to pi/2 in 3D, i.e., the
vectors are in the xy plane).
scale: tuple of float
Scaling along the dimensions of the underlying data.
"""
_log.debug('Calling __init__')
assert len(dim) in (2, 3), 'Disc can only be build in 2 or 3 dimensions!'
assert isinstance(phi, Number), 'phi has to be an angle in radians!'
assert isinstance(theta, Number) or theta is None, 'theta has to be an angle in radians or None!'
if len(dim) == 2 and theta is None: # 2D and 3rd component not explicitely wanted:
y_comp = np.ones(dim) * np.sin(phi)
x_comp = np.ones(dim) * np.cos(phi)
data = np.stack([x_comp, y_comp], axis=-1)
else: # 3D, always have a third component:
if theta is None:
theta = np.pi/2 # xy-plane if not specified otherwise!
z_comp = np.ones(dim) * np.cos(theta)
y_comp = np.ones(dim) * np.sin(theta) * np.sin(phi)
x_comp = np.ones(dim) * np.sin(theta) * np.cos(phi)
data = np.stack([x_comp, y_comp, z_comp], axis=-1)
return Field(data=data, scale=scale, vector=True)
def create_vector_vortex(dim, center=None, phi_0=np.pi/2, oop_r=None, oop_sign=1, core_r=0, axis=0, scale=1.0):
"""Field subclass implementing a vortex vector field with 3 components in 2 or 3 dimensions.
Attributes
----------
dim : tuple
The dimensions of the grid.
center : tuple (N=2 or N=3), optional
The vortex center, given in 2D `(v, u)` or 3D `(z, y, x)`, where the perpendicular axis is discarded
(determined by the `axis` parameter). Is set to the center of the field of view if not specified.
The vortex center should be between two pixels to avoid singularities.
axis : int, optional
The orientation of the vortex axis. The default is 0 and corresponds to the z-axis. Is ignored if dim is
only 2D.
phi_0 : float, optional
Angular offset that allows all arrows to be rotated simultaneously. The default value is `pi/2` and corresponds
to an anti-clockwise rotation, while a value of `-pi/2` corresponds to a clockwise rotation. `0` and `pi` lead
to arrows that all point in/outward.
oop_r : float, optional
Radius of a potential out-of-plane ("oop") component in the vortex center. If `None`, the vortex is purely
in-plane, which is the default. Set this to a number (in pixels) that determines the radius in which the
oop-component is tilted into the plane. A `0` leads to an immediate/sharp tilt (not visible without setting a
core radius, see `core_r`), while setting this to the radius of your vortex disc, will let it tilt smoothly
until reaching the edge. If this is `None`, only two components will be created for 2-dimensional vortices!
oop_sign : {1, -1}, optional
Only used if `oop_r` is not None (i.e. there is an out-of-plane component). Can be `1` (default) or `-1` and
determines if the core (if it exists) is aligned parallel (`+1`) or antiparallel (`-1`) to the chosen symmetry
axis.
core_r : float, optional
Radius of a potential vortex core that's homogeneously oriented out-of-plane. Is not used when `oop_r` is not
set and defaults to `0`, which means the vortex core is infinitely small.
scale: tuple of float
Scaling along the dimensions of the underlying data.
Returns
-------
field : `~.Field` object
The resulting vector field.
"""
_log.debug('Calling create_vector_vortex')
assert len(dim) in (2, 3), 'Vortex can only be build in 2 or 3 dimensions!'
# Find indices of the vortex plane axes:
idx_uv = [0, 1, 2]
if len(dim) == 3: # 3D:
idx_uv.remove(axis)
else: # 2D:
idx_uv.remove(2)
# 2D dimensions:
dim_uv = tuple([dim[i] for i in idx_uv])
# Find default values:
if center is None:
center = tuple([dim[i] / 2 for i in idx_uv])
elif len(center) == 3: # if a 3D-center is given, just take the relevant coordinates:
center = list(center)
del center[axis]
center = tuple(center)
# Create vortex plane (2D):
coords_uv = np.indices(dim_uv) + 0.5 # 0.5 to get to pixel/voxel center!
coords_uv = coords_uv - np.asarray(center, dtype=float)[:, None, None] # Shift by center!
phi = np.arctan2(coords_uv[0], coords_uv[1]) - phi_0
rr = np.hypot(coords_uv[0], coords_uv[1])
rr_clip = np.clip(rr - core_r, a_min=0, a_max=None) # negative inside core_r (clipped to 0), positive outside!
# Check if a core should be constructed (oop_r != 0):
if oop_r is None:
w_comp = np.zeros(dim_uv)
else:
assert oop_r >= 0, 'oop_r has to be a positive number!'
assert oop_sign in (1, -1), 'Sign of the out-of-plane component has to be either +1 or -1!'
w_comp = 1 - 2/np.pi * np.arcsin(np.tanh(np.pi*rr_clip/(oop_r+1E-30))) # orthogonal: 1 inside, to 0 outside!
w_comp *= oop_sign * w_comp
v_comp = np.ones(dim_uv) * np.sin(phi) * np.sqrt(1 - np.abs(w_comp))
u_comp = np.ones(dim_uv) * np.cos(phi) * np.sqrt(1 - np.abs(w_comp))
if len(dim) == 3: # Expand to 3D:
w_comp = np.expand_dims(w_comp, axis=axis)
v_comp = np.expand_dims(v_comp, axis=axis)
u_comp = np.expand_dims(u_comp, axis=axis)
reps = [1, 1, 1] # repetitions for tiling
reps[axis] = dim[axis] # repeat along chosen axis
w_comp = np.tile(w_comp, reps)
v_comp = np.tile(v_comp, reps)
u_comp = np.tile(u_comp, reps)
if axis == 0: # z-axis
z_comp = w_comp
y_comp = -v_comp
x_comp = -u_comp
elif axis == 1: # y-axis
z_comp = v_comp
y_comp = w_comp
x_comp = u_comp
elif axis == 2: # x-axis
z_comp = -v_comp
y_comp = -u_comp
x_comp = w_comp
else:
raise ValueError(f'{axis} is not a valid argument for axis (has to be 0, 1 or 2)')
data = np.stack([x_comp, y_comp, z_comp], axis=-1)
return Field(data=data, scale=scale, vector=True)
def create_vector_skyrmion(dim, center=None, phi_0=0, core_sign=1, skyrm_d=None, wall_d=None, axis=0, scale=1.0):
"""Create a 3-dimensional magnetic Bloch or Neel type skyrmion distribution.
Parameters
----------
dim : tuple
The dimensions of the grid.
center : tuple (N=2 or N=3), optional
The source center, given in 2D `(v, u)` or 3D `(z, y, x)`, where the perpendicular axis
is discarded. Is set to the center of the field of view if not specified.
The center has to be between two pixels.
phi_0 : float, optional
Angular offset switching between Neel type (0 [default] or pi) or Bloch type (+/- pi/2)
skyrmions.
core_sign : {1, -1}, optional
Can be `1` (default) or `-1` and determines if the skyrmion core is aligned parallel (`+1`) or antiparallel
(`-1`) to the chosen symmetry axis.
skyrm_d : float, optional
Diameter of the skyrmion. Defaults to half of the smaller dimension perpendicular to the
skyrmion axis if not specified.
wall_d : float, optional
Diameter of the domain wall of the skyrmion. Defaults to `skyrm_d / 4` if not specified.
axis : int, optional
The orientation of the vortex axis. The default is 0 and corresponds to the z-axis. Is ignored if dim is
only 2D.
scale: tuple of float
Scaling along the dimensions of the underlying data.
Returns
-------
field : `~.Field` object
The resulting vector field.
Notes
-----
To avoid singularities, the source center should lie between the pixel centers (which
reside at coordinates with _.5 at the end), i.e. integer values should be used as center
coordinates (e.g. coordinate 1 lies between the first and the second pixel).
Skyrmion wall width is dependant on exchange stiffness A [J/m] and anisotropy K [J/m³]
The out-of-plane magnetization at the domain wall is described in a paper by Romming et al
(see DOI: 10.1103/PhysRevLett.114.177203s)
"""
def _theta(r):
theta_1 = + np.arcsin(np.tanh((r + skyrm_d/2)/(wall_d/2)))
theta_2 = - np.arcsin(np.tanh((r - skyrm_d/2)/(wall_d/2)))
theta = theta_1 + theta_2
theta /= np.abs(theta).max() / np.pi
return theta
_log.debug('Calling create_vector_skyrmion')
assert len(dim) in (2, 3), 'Skyrmion can only be build in 2 or 3 dimensions!'
assert core_sign in (1, -1), 'Sign of the out-of-plane component has to be either +1 or -1!'
# Find indices of the skyrmion plane axes:
idx_uv = [0, 1, 2]
if len(dim) == 3: # 3D:
idx_uv.remove(axis)
else: # 2D:
idx_uv.remove(2)
# 2D dimensions:
dim_uv = tuple([dim[i] for i in idx_uv])
# Find default values:
if skyrm_d is None:
skyrm_d = np.min(dim_uv) / 2
if wall_d is None:
wall_d = skyrm_d / 4
if center is None:
center = tuple([dim[i] / 2 for i in idx_uv])
elif len(center) == 3: # if a 3D-center is given, just take the relevant coordinates:
center = list(center)
del center[axis]
center = tuple(center)
# Create skyrmion plane (2D):
coords_uv = np.indices(dim_uv) + 0.5 # 0.5 to get to pixel/voxel center!
coords_uv = coords_uv - np.asarray(center, dtype=float)[:, None, None] # Shift by center!
rr = np.hypot(coords_uv[0], coords_uv[1])
phi = np.arctan2(coords_uv[0], coords_uv[1]) - phi_0
theta = _theta(rr)
w_comp = core_sign * np.cos(theta)
v_comp = np.sin(theta) * np.sin(phi)
u_comp = np.sin(theta) * np.cos(phi)
# Expansion to 3D if necessary and component shuffling:
if len(dim) == 3: # Expand to 3D:
w_comp = np.expand_dims(w_comp, axis=axis)
v_comp = np.expand_dims(v_comp, axis=axis)
u_comp = np.expand_dims(u_comp, axis=axis)
reps = [1, 1, 1] # repetitions for tiling
reps[axis] = dim[axis] # repeat along chosen axis
w_comp = np.tile(w_comp, reps)
v_comp = np.tile(v_comp, reps)
u_comp = np.tile(u_comp, reps)
if axis == 0: # z-axis
z_comp = w_comp
y_comp = -v_comp
x_comp = -u_comp
elif axis == 1: # y-axis
z_comp = v_comp
y_comp = w_comp
x_comp = u_comp
elif axis == 2: # x-axis
z_comp = -v_comp
y_comp = -u_comp
x_comp = w_comp
else:
raise ValueError(f'{axis} is not a valid argument for axis (has to be 0, 1 or 2)')
data = np.stack([x_comp, y_comp, z_comp], axis=-1)
return Field(data=data, scale=scale, vector=True)
def create_vector_singularity(dim, center=None, scale=1.0):
"""Create a 3-dimensional magnetic distribution of a homogeneous magnetized object.
Parameters
----------
dim : tuple
The dimensions of the grid.
center : tuple (N=2 or N=3), optional
The source center, given in 2D `(v, u)` or 3D `(z, y, x)`, where the perpendicular axis
is discarded. Is set to the center of the field of view if not specified.
The source center has to be between two pixels.
scale: tuple of float
Scaling along the dimensions of the underlying data.
Returns
-------
field : `~.Field` object
The resulting vector field.
Notes
-----
To avoid singularities, the source center should lie between the pixel centers (which
reside at coordinates with _.5 at the end), i.e. integer values should be used as center
coordinates (e.g. coordinate 1 lies between the first and the second pixel).
Per default, all arrows point outwards, negate the resulting `Field` object with a minus after creation to let
them point inwards.
"""
_log.debug('Calling create_vector_singularity')
# Find default values:
if center is None:
center = tuple([d / 2 for d in dim])
assert len(dim) == len(center), f"Length of dim ({len(dim)}) and center ({len(center)}) don't match!"
# Setup coordinates, shape is (c, z, y, x), if 3D, or (c, y, x), if 2D (c: components):
coords = np.indices(dim) + 0.5 # 0.5 to get to pixel/voxel center!
bc_shape = (len(dim,),) + (1,)*len(dim) # Shape for broadcasting, (3,1,1,1) for 3D, (2,1,1) for 2D!
coords = coords - np.reshape(center, bc_shape) # Shift by center (append 1s for broadcasting)!
rr = np.sqrt(np.sum([coords[i]**2 for i in range(len(dim))], axis=0))
coords /= rr + 1E-30 # Normalise amplitude (keep direction), rr (z,y,x) is broadcasted to data (c,z,y,x)!
# coords has components listed in wrong order (z, y, x) in the first dimension, we need (x, y, z) in the last:
coords = np.flip(coords, axis=0)
# Finally, the data has the coordinate axis at the end, not at the front:
data = np.moveaxis(coords, 0, -1) # (c,z,y,x) -> (z,y,x,c)
return Field(data=data, scale=scale, vector=True)
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""Subpackage containing EMPyRe IO functionality for several EMPyRe classes."""
from .io_field import *
__all__ = []
__all__.extend(io_field.__all__)
del io_field
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""Subpackage containing EMPyRe IO functionality for the Field class."""
from . import llg, numpy, ovf, tec, text, vtk
plugin_list = [llg, numpy, ovf, tec, text, vtk]
__all__ = ['plugin_list']
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""IO plugin for LLG format."""
import logging
import numpy as np
from ...fields.field import Field
_log = logging.getLogger(__name__)
file_extensions = ('.llg',) # Recognised file extensions
def reader(filename, scale=None, vector=None, **kwargs):
_log.debug('Call reader')
if vector is None:
vector = True
assert vector is True, 'Only vector fields can be read from the llg file format!'
SCALE = 1.0E-9 / 1.0E-2 # From cm to nm
data_columns = np.genfromtxt(filename, skip_header=2)
dim = tuple(np.genfromtxt(filename, dtype=int, skip_header=1, skip_footer=len(data_columns[:, 0])))
if scale is None: # Otherwise overwrite!
stride_x = 1 # x varies fastest
stride_y = dim[2] # one y step for dim[2] x steps
stride_z = dim[1] * dim[2] # one z step for one x-y layer (dim[1]*dim[2])
scale_x = (data_columns[stride_x, 0] - data_columns[0, 0]) / SCALE # first column varies in x
scale_y = (data_columns[stride_y, 1] - data_columns[0, 1]) / SCALE # second column varies in y
scale_z = (data_columns[stride_z, 2] - data_columns[0, 2]) / SCALE # third column varies in z
scale = (scale_z, scale_y, scale_x)
x_mag, y_mag, z_mag = data_columns[:, 3:6].T
data = np.stack((x_mag.reshape(dim), y_mag.reshape(dim), z_mag.reshape(dim)), axis=-1)
return Field(data, scale, vector=True)
def writer(filename, field, **kwargs):
_log.debug('Call writer')
assert field.vector and len(field.dim) == 3, 'Only 3D vector fields can be saved to the llg file format!'
SCALE = 1.0E-9 / 1.0E-2 # from nm to cm
# Create 3D meshgrid and reshape it and the field into a list where x varies first:
zzz, yyy, xxx = (np.indices(field.dim) + 0.5) * np.reshape(field.scale, (3, 1, 1, 1)) * SCALE # broadcast shape!
z_coord, y_coord, x_coord = np.ravel(zzz), np.ravel(yyy), np.ravel(xxx) # Turn into vectors!
x_comp, y_comp, z_comp = field.comp # Extract scalar field components!
x_vec, y_vec, z_vec = np.ravel(x_comp.data), np.ravel(y_comp.data), np.ravel(z_comp.data) # Turn into vectors!
data = np.array([x_coord, y_coord, z_coord, x_vec, y_vec, z_vec]).T
# Save data to file:
with open(filename, 'w') as mag_file:
mag_file.write('LLGFileCreator: EMPyRe vector Field\n')
mag_file.write(' {:d} {:d} {:d}\n'.format(*field.dim))
mag_file.writelines('\n'.join(' '.join('{:7.6e}'.format(cell) for cell in row) for row in data))
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""IO plugin for the numpy format."""
import logging
import numpy as np
from ...fields.field import Field
_log = logging.getLogger(__name__)
file_extensions = ('.npy', '.npz') # Recognised file extensions
def reader(filename, scale=None, vector=None, **kwargs):
_log.debug('Call reader')
if vector is None:
vector = False
if scale is None:
scale = 1.0
return Field(np.load(filename, **kwargs), scale, vector)
def writer(filename, field, **kwargs):
_log.debug('Call writer')
np.save(filename, field.data, **kwargs)
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""IO plugin for simple text format."""
import logging
import os
import numpy as np
from ...fields.field import Field
_log = logging.getLogger(__name__)
file_extensions = ('.ovf', '.omf', '.ohf', 'obf') # Recognised file extensions
def reader(filename, scale=None, vector=None, segment=None, **kwargs):
"""More info at:
http://math.nist.gov/oommf/doc/userguide11b2/userguide/vectorfieldformat.html
http://math.nist.gov/oommf/doc/userguide12a5/userguide/OVF_2.0_format.html
"""
_log.debug('Calling reader')
if vector is None:
vector = True
assert vector is True, 'Only vector fields can be loaded from ovf-files!'
with open(filename, 'rb') as load_file:
line = load_file.readline()
assert line.startswith(b'# OOMMF') # File has OVF format!
read_header, read_data = False, False
header = {'version': line.split()[-1].decode('utf-8')}
x_mag, y_mag, z_mag = [], [], []
data_mode = None
while True:
# --- READ START OF FILE OR IN BETWEEN SEGMENTS LINE BY LINE ---------------------------
if not read_header and not read_data: # Start of file or between segments!
line = load_file.readline()
if line == b'':
break # End of file is reached!
if line.startswith(b'# Segment count'):
seg_count = int(line.split()[-1]) # Total number of segments (often just 1)!
seg_curr = 0 # Current segment (0: not in first segment, yet!)
if seg_count > 1: # If multiple segments, check if "segment" was set correctly:
assert segment is not None, (f'Multiple ({seg_count}) segments were found! '
'Chose one via the segment parameter!')
elif segment is None: # Only one segment AND parameter not set:
segment = 1 # Default to the first/only segment!
assert 0 < segment <= seg_count, (f'parameter segment={segment} out of bounds, '
f'Use value between 1 and {seg_count}!')
header['segment_count'] = seg_count
elif line.startswith(b'# Begin: Segment'): # Segment start!
seg_curr += 1
if seg_curr > segment:
break # Stop reading the file!
elif line.startswith(b'# Begin: Header'): # Header start!
read_header = True
elif line.startswith(b'# Begin: Data'): # Data start!
read_data = True
data_mode = ' '.join(line.decode('utf-8').split()[3:])
assert data_mode in ['text', 'Text', 'Binary 4', 'Binary 8'], \
f'Data mode {data_mode} is currently not supported by this reader!'
assert header.get('meshtype') == 'rectangular', \
'Only rectangular grids can be currently read!'
# --- READ HEADER LINE BY LINE ---------------------------------------------------------
elif read_header:
line = load_file.readline()
if line.startswith(b'# End: Header'): # Header is done:
read_header = False
continue
line = line.decode('utf-8') # Decode to use strings here!
line_list = line.split()
if '##' in line_list: # Strip trailing comments:
del line_list[line_list.index('##'):]
if len(line_list) <= 1: # Just '#' or empty line:
continue
key, value = line_list[1].strip(':'), ' '.join(line_list[2:])
if key not in header: # Add new key, value pair if not existant:
header[key] = value
elif key == 'Desc': # Description can go over several lines:
header['Desc'] = ' '.join([header['Desc'], value])
# --- READ DATA LINE BY LINE -----------------------------------------------------------
elif read_data: # Currently in a data block:
if data_mode in ['text', 'Text']: # Read data as text, line by line:
line = load_file.readline()
if line.startswith(b'# End: Data'):
read_data = False # Stop reading data and search for new segments!
continue
elif seg_curr < segment: # Do nothing with the line if wrong segment!
continue
else:
x, y, z = [float(i) for i in line.split()]
x_mag.append(x)
y_mag.append(y)
z_mag.append(z)
elif 'Binary' in data_mode: # Read data as binary, all bytes at the same time:
# Currently every segment is read until the wanted one is processed. Only that one is returned!
count = int(data_mode.split()[-1]) # Either 4 or 8!
if header['version'] == '1.0': # Big endian float:
dtype = f'>f{count}'
elif header['version'] == '2.0': # Little endian float:
dtype = f'<f{count}'
test = np.fromfile(load_file, dtype=dtype, count=1) # Read test byte!
if count == 4: # Binary 4:
assert test == 1234567.0, 'Wrong test bytes!'
elif count == 8: # Binary 8:
assert test == 123456789012345.0, 'Wrong test bytes!'
dim = (int(header['znodes']), int(header['ynodes']), int(header['xnodes']))
data_raw = np.fromfile(load_file, dtype=dtype, count=3*np.prod(dim))
x_mag, y_mag, z_mag = data_raw[0::3], data_raw[1::3], data_raw[2::3]
read_data = False # Stop reading data and search for new segments (if any).
# --- READING DONE -------------------------------------------------------------------------
# Format after reading:
dim = (int(header['znodes']), int(header['ynodes']), int(header['xnodes']))
x_mag = np.asarray(x_mag).reshape(dim)
y_mag = np.asarray(y_mag).reshape(dim)
z_mag = np.asarray(z_mag).reshape(dim)
data = np.stack((x_mag, y_mag, z_mag), axis=-1) * float(header.get('valuemultiplier', 1))
if scale is None:
unit = header.get('meshunit', 'nm')
if unit == 'unspecified':
unit = 'nm'
_log.info(f'unit: {unit}')
unit_scale = {'m': 1e9, 'mm': 1e6, 'µm': 1e3, 'nm': 1}[unit]
xstep = float(header.get('xstepsize')) * unit_scale
ystep = float(header.get('ystepsize')) * unit_scale
zstep = float(header.get('zstepsize')) * unit_scale
scale = (zstep, ystep, xstep)
return Field(data, scale=scale, vector=True)
def writer(filename, field, **kwargs):
_log.debug('Call writer')
assert field.vector and len(field.dim) == 3, 'Only 3D vector fields can be saved to ovf files!'
with open(filename, 'w') as save_file:
save_file.write('# OOMMF OVF 2.0\n')
save_file.write('# Segment count: 1\n')
save_file.write('# Begin: Segment\n')
# Write Header:
save_file.write('# Begin: Header\n')
name = os.path.split(filename)[1]
save_file.write(f'# Title: PYRAMID-VECTORDATA {name}\n')
save_file.write('# meshtype: rectangular\n')
save_file.write('# meshunit: nm\n')
save_file.write('# valueunit: A/m\n')
save_file.write('# valuemultiplier: 1.\n')
save_file.write('# xmin: 0.\n')
save_file.write('# ymin: 0.\n')
save_file.write('# zmin: 0.\n')
save_file.write(f'# xmax: {field.scale[2] * field.dim[2]}\n')
save_file.write(f'# ymax: {field.scale[1] * field.dim[1]}\n')
save_file.write(f'# zmax: {field.scale[0] * field.dim[0]}\n')
save_file.write('# xbase: 0.\n')
save_file.write('# ybase: 0.\n')
save_file.write('# zbase: 0.\n')
save_file.write(f'# xstepsize: {field.scale[2]}\n')
save_file.write(f'# ystepsize: {field.scale[1]}\n')
save_file.write(f'# zstepsize: {field.scale[0]}\n')
save_file.write(f'# xnodes: {field.dim[2]}\n')
save_file.write(f'# ynodes: {field.dim[1]}\n')
save_file.write(f'# znodes: {field.dim[0]}\n')
save_file.write('# End: Header\n')
# Write data:
save_file.write('# Begin: Data Text\n')
x_mag, y_mag, z_mag = field.comp
x_mag = x_mag.data.ravel()
y_mag = y_mag.data.ravel()
z_mag = z_mag.data.ravel()
for i in range(np.prod(field.dim)):
save_file.write(f'{x_mag[i]:g} {y_mag[i]:g} {z_mag[i]:g}\n')
save_file.write('# End: Data Text\n')
save_file.write('# End: Segment\n')
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""IO plugin for simple text format."""
import logging
import re
import numpy as np
from ...fields.field import Field
from ...utils.misc import interp_to_regular_grid
_log = logging.getLogger(__name__)
file_extensions = ('.tec',) # Recognised file extensions
def reader(filename, scale=None, vector=None, **kwargs):
assert isinstance(scale, tuple), 'The scale must be a tuple, each entry corresponding to one grid dimensions!'
_log.debug('Call reader')
if vector is None:
vector = True
assert vector is True, 'Only vector fields can be loaded from tec-files!'
with open(filename, 'r') as mag_file:
lines = mag_file.readlines() # Read in lines!
match = re.search(R'N=(\d+)', lines[2]) # Extract number of points from third line!
if match:
n_points = int(match.group(1))
else:
raise IOError('File does not seem to match .tec format!')
n_head, n_foot = 3, len(lines) - (3 + n_points)
# Read in data:
data_raw = np.genfromtxt(filename, skip_header=n_head, skip_footer=n_foot)
if scale is None:
raise ValueError('For the interpolation of unstructured grids, the `scale` parameter is required!')
data = interp_to_regular_grid(data_raw[:, :3], data_raw[:, 3:], scale, **kwargs)
return Field(data, scale, vector=vector)
def writer(filename, field, **kwargs):
_log.debug('Call writer')
raise NotImplementedError('A writer for this extension is not yet implemented!')
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""IO plugin for simple text format."""
import logging
import ast
import numpy as np
from ...fields.field import Field
_log = logging.getLogger(__name__)
file_extensions = ('.txt',) # Recognised file extensions
def reader(filename, scale=None, vector=None, **kwargs):
_log.debug('Call reader')
if vector is None:
vector = False
assert vector is False, 'Only scalar 2D fields can currently be read with this file reader!'
with open(filename, 'r') as load_file: # Read data:
empyre_format = load_file.readline().startswith('EMPYRE-FORMAT')
if empyre_format: # File has EMPyRe structure:
scale = ast.literal_eval(load_file.readline()[8:-4]) # [8:-4] takes just the scale string!
data = np.loadtxt(filename, delimiter='\t', skiprows=2) # skips header!
else: # Try default with provided kwargs:
scale = 1.0 if scale is None else scale # Set default if not provided!
data = np.loadtxt(filename, **kwargs)
return Field(data, scale=scale, vector=False)
def writer(filename, field, with_header=True, **kwargs):
_log.debug('Call writer')
assert not field.vector, 'Vector fields can currently not be saved to text!'
assert len(field.dim) == 2, 'Only 2D fields can currenty be saved to text!'
if with_header: # write header:
with open(filename, 'w') as save_file:
save_file.write('EMPYRE-FORMAT\n')
save_file.write(f'scale = {field.scale} nm\n')
save_kwargs = {'fmt': '%7.6e', 'delimiter': '\t'}
else:
save_kwargs = kwargs
with open(filename, 'ba') as save_file: # the 'a' is for append!
np.savetxt(save_file, field.data, **save_kwargs)
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""IO plugin for simple text format."""
import logging
from numbers import Number
import numpy as np
from ...fields.field import Field
from ...utils.misc import interp_to_regular_grid, restrict_points
from ...vis import colors
_log = logging.getLogger(__name__)
file_extensions = ('.vtk',) # Recognised file extensions
def reader(filename, scale=None, vector=None, bounds=None, **kwargs):
"""More infos at:
overview: https://docs.enthought.com/mayavi/mayavi/data.html
writing: https://vtk.org/Wiki/VTK/Writing_VTK_files_using_python
format: https://www.vtk.org/wp-content/uploads/2015/04/file-formats.pdf
"""
_log.debug('Calling reader')
try:
from tvtk.api import tvtk
except ImportError:
_log.error('This extension recquires the tvtk package!')
return
if vector is None:
vector = True
# Setting up reader:
reader = tvtk.DataSetReader(file_name=filename, read_all_scalars=True, read_all_vectors=vector)
reader.update()
# Getting output:
output = reader.output
assert output is not None, 'File reader could not find data or file "{}"!'.format(filename)
# Reading points and vectors:
if isinstance(output, tvtk.ImageData): # tvtk.StructuredPoints is a subclass of tvtk.ImageData!
# Connectivity: implicit; described by: 3D data array and spacing along each axis!
_log.info('geometry: ImageData')
# Load relevant information from output (reverse to get typical Python order z,y,x):
dim = output.dimensions[::-1]
origin = output.origin[::-1]
spacing = output.spacing[::-1]
_log.info(f'dim: {dim}, origin: {origin}, spacing: {spacing}')
assert len(dim) == 3, 'Data has to be three-dimensional!'
if scale is None:
scale = tuple(spacing)
if vector: # Extract vector compontents and create magnitude array:
vector_array = np.asarray(output.point_data.vectors, dtype=np.float)
x_mag, y_mag, z_mag = vector_array.T
data = np.stack((x_mag.reshape(dim), y_mag.reshape(dim), z_mag.reshape(dim)), axis=-1)
else: # Extract scalar data and create magnitude array:
scalar_array = np.asarray(output.point_data.scalars, dtype=np.float)
data = scalar_array.reshape(dim)
elif isinstance(output, tvtk.RectilinearGrid):
# Connectivity: implicit; described by: 3D data array and 1D array of spacing for each axis!
_log.info('geometry: RectilinearGrid')
raise NotImplementedError('RectilinearGrid is currently not supported!')
elif isinstance(output, tvtk.StructuredGrid):
# Connectivity: implicit; described by: 3D data array and 3D position arrays for each axis!
_log.info('geometry: StructuredGrid')
raise NotImplementedError('StructuredGrid is currently not supported!')
elif isinstance(output, tvtk.PolyData):
# Connectivity: explicit; described by: x, y, z positions of vertices and arrays of surface cells!
_log.info('geometry: PolyData')
raise NotImplementedError('PolyData is currently not supported!')
elif isinstance(output, tvtk.UnstructuredGrid):
# Connectivity: explicit; described by: x, y, z positions of vertices and arrays of volume cells!
_log.info('geometry: UnstructuredGrid')
# Load relevant information from output:
point_array = np.asarray(output.points, dtype=np.float)
if vector:
data_array = np.asarray(output.point_data.vectors, dtype=np.float)
else:
data_array = np.asarray(output.point_data.scalars, dtype=np.float)
if scale is None:
raise ValueError('For the interpolation of unstructured grids, the `scale` parameter is required!')
elif isinstance(scale, Number): # Scale is the same for each dimension x, y, z!
scale = (scale,) * 3
elif isinstance(scale, tuple):
assert len(scale) == 3, f'Each dimension (z, y, x) needs a scale, but {scale} was given!'
# Crop data to required range, if necessary
if bounds is not None:
_log.info('Restrict data')
point_array, data_array = restrict_points(point_array, data_array, bounds)
data = interp_to_regular_grid(point_array, data_array, scale, **kwargs)
else:
raise TypeError('Data type of {} not understood!'.format(output))
return Field(data, scale, vector=True)
def writer(filename, field, **kwargs):
_log.debug('Call writer')
assert len(field.dim) == 3, 'Currently only 3D fields can be saved to vtk!'
try:
from tvtk.api import tvtk, write_data
except ImportError:
_log.error('This extension recquires the tvtk package!')
return
# Create dataset:
origin = (0, 0, 0)
spacing = (field.scale[2], field.scale[1], field.scale[0])
dimensions = (field.dim[2], field.dim[1], field.dim[0])
sp = tvtk.StructuredPoints(origin=origin, spacing=spacing, dimensions=dimensions)
# Fill with data from field:
if field.vector: # Handle vector fields:
# Put vector components in corresponding array:
vectors = field.data.reshape(-1, 3)
sp.point_data.vectors = vectors
sp.point_data.vectors.name = 'vectors'
# Calculate colors:
x_mag, y_mag, z_mag = field.comp
magvec = np.asarray((x_mag.data.ravel(), y_mag.data.ravel(), z_mag.data.ravel()))
cmap = kwargs.pop('cmap', None)
if cmap is None:
cmap = colors.cmaps.cyclic_cubehelix
rgb = cmap.rgb_from_vector(magvec)
point_colors = tvtk.UnsignedIntArray()
point_colors.number_of_components = 3
point_colors.name = 'colors'
point_colors.from_array(rgb)
sp.point_data.scalars = point_colors
sp.point_data.scalars.name = 'colors'
else: # Handle scalar fields:
scalars = field.data.ravel()
sp.point_data.scalars = scalars
sp.point_data.scalars.name = 'scalars'
# Write the data to file:
write_data(sp, filename)
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""IO functionality for Field objects."""
import logging
import os
from ..fields.field import Field
from .field_plugins import plugin_list
__all__ = ['load_field', 'save_field']
_log = logging.getLogger(__name__)
def load_field(filename, scale=None, vector=None, **kwargs):
"""Load supported file into a :class:`~..fields.Field` instance.
The function loads the file according to the extension:
SCALAR???
- hdf5 for HDF5. # TODO: You can use comp_pos here!!!
- EMD Electron Microscopy Dataset format (also HDF5).
- npy or npz for numpy formats.
PHASEMAP
- hdf5 for HDF5.
- rpl for Ripple (useful to export to Digital Micrograph).
- dm3 and dm4 for Digital Micrograph files.
- unf for SEMPER unf binary format.
- txt format.
- npy or npz for numpy formats.
- Many image formats such as png, tiff, jpeg...
VECTOR
- hdf5 for HDF5.
- EMD Electron Microscopy Dataset format (also HDF5).
- llg format.
- ovf format.
- npy or npz for numpy formats.
Any extra keyword is passed to the corresponsing reader. For available options see their individual documentation.
Parameters
----------
filename: str
The filename to be loaded.
scale: tuple of float, optional
Scaling along the dimensions of the underlying data. Default is 1.
vector: bool, optional
True if the field should be a vector field, False if it should be interpreted as a scalar field (default).
Returns
-------
field: `Field`
A `Field` object containing the loaded data.
Notes
-----
Falls back to HyperSpy routines for loading data, make sure it is installed if you need the full capabilities.
"""
_log.debug('Calling load_field')
extension = os.path.splitext(filename)[1]
for plugin in plugin_list: # Iterate over all plugins:
if extension in plugin.file_extensions: # Check if extension is recognised:
return plugin.reader(filename, scale=scale, vector=vector, **kwargs)
# If nothing was found, try HyperSpy
_log.debug('Using HyperSpy')
try:
import hyperspy.api as hs
except ImportError:
_log.error('This extension recquires the hyperspy package!')
return
comp_pos = kwargs.pop('comp_pos', -1)
return Field.from_signal(hs.load(filename, **kwargs), scale=scale, vector=vector, comp_pos=comp_pos)
def save_field(filename, field, **kwargs):
"""Saves the Field in the specified format.
The function gets the format from the extension:
- hdf5 for HDF5.
- EMD Electron Microscopy Dataset format (also HDF5).
- npy or npz for numpy formats.
If no extension is provided, 'hdf5' is used. Most formats are saved with the HyperSpy package (internally the field
is first converted to a HyperSpy Signal.
Each format accepts a different set of parameters. For details see the specific format documentation.
Parameters
----------
filename : str, optional
Name of the file which the Field is saved into. The extension determines the saving procedure.
"""
"""Saves the phasemap in the specified format.
The function gets the format from the extension:
- hdf5 for HDF5.
- rpl for Ripple (useful to export to Digital Micrograph).
- unf for SEMPER unf binary format.
- txt format.
- Many image formats such as png, tiff, jpeg...
If no extension is provided, 'hdf5' is used. Most formats are
saved with the HyperSpy package (internally the phasemap is first
converted to a HyperSpy Signal.
Each format accepts a different set of parameters. For details
see the specific format documentation.
Parameters
----------
filename: str, optional
Name of the file which the phasemap is saved into. The extension
determines the saving procedure.
save_mask: boolean, optional
If True, the `mask` is saved, too. For all formats, except HDF5, a separate file will
be created. HDF5 always saves the `mask` in the metadata, independent of this flag. The
default is False.
save_conf: boolean, optional
If True, the `confidence` is saved, too. For all formats, except HDF5, a separate file
will be created. HDF5 always saves the `confidence` in the metadata, independent of
this flag. The default is False
pyramid_format: boolean, optional
Only used for saving to '.txt' files. If this is True, the grid spacing is saved
in an appropriate header. Otherwise just the phase is written with the
corresponding `kwargs`.
"""
_log.debug('Calling save_field')
extension = os.path.splitext(filename)[1]
for plugin in plugin_list: # Iterate over all plugins:
if extension in plugin.file_extensions: # Check if extension is recognised:
plugin.writer(filename, field, **kwargs)
return
# If nothing was found, try HyperSpy:
_log.debug('Using HyperSpy')
field.to_signal().save(filename, **kwargs)
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""Subpackage containing utility functionality."""
from .quaternion import *
__all__ = []
__all__.extend(quaternion.__all__)
del quaternion
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""This module provides the miscellaneous helper functions."""
import logging
import itertools
from time import time
import numpy as np
from tqdm import tqdm
from scipy.spatial import cKDTree, qhull
from scipy.interpolate import LinearNDInterpolator
__all__ = ['levi_civita', 'interp_to_regular_grid', 'restrict_points']
_log = logging.getLogger(__name__)
def levi_civita(i, j, k):
_log.debug('Calling levi_civita')
return (j-i) * (k-i) * (k-j) / (np.abs(j-i) * np.abs(k-i) * np.abs(k-j))
def interp_to_regular_grid(points, values, scale, scale_factor=1, step=1, convex=True, distance_upper_bound=None):
"""Interpolate values on points to regular grid.
Parameters
----------
points : np.ndarray, (N, 3)
Array of points, describing the location of the values that should be interpolated. Three columns x, y, z!
values : np.ndarray, (N, c)
Array of values that should be interpolated to the new grid. `c` is the number of components (`1` for scalar
fields, `3` for normal 3D vector fields).
scale : tuple of 3 ints
Scale along each of the 3 spatial dimensions. Usually given in nm.
scale_factor : float, optional
Additional scaling factor that should be used if the original points are not described on a nm-scale. Use this
to convert from nm of `scale` to the unit of the points. By default 1.
step : int, optional
If this is bigger than 1 (the default), only every `step` point is taken into account. Can speed up calculation,
but you'll lose accuracy of your interpolation.
convex : bool, optional
By default True. If this is set to False, additional measures are taken to find holes in the point cloud.
WARNING: this is an experimental feature that should be used with caution!
distance_upper_bound: float, optional
Only used if `convex=False`. Set the upper bound, determining if a point of the new (interpolated) grid is too
far away from any original point. They are assumed to be in a "hole" and their values are set to zero. Set this
value in nm, it will be converted to the local unit of the original points internally. If not set and
`convex=True`, double of the the mean of `scale` is calculated and used (can be troublesome if the scales vary
drastically).
Returns
-------
interpolation: np.ndarray
Interpolated grid with shape `(zdim, ydim, xdim)` for scalar and `(zdim, ydim, xdim, ncomp)` for vector field.
"""
_log.debug('Calling interpolate_to_regular_grid')
z_uniq = np.unique(points[:, 2])
_log.info(f'unique positions along z: {len(z_uniq)}')
# Translate scale in local units (not necessarily nm), taken care of with `scale_factor`:
scale = tuple([s * scale_factor for s in scale])
# Determine the size of the point cloud of irregular coordinates:
x_min, x_max = points[:, 0].min(), points[:, 0].max()
y_min, y_max = points[:, 1].min(), points[:, 1].max()
z_min, z_max = points[:, 2].min(), points[:, 2].max()
x_diff, y_diff, z_diff = np.ptp(points[:, 0]), np.ptp(points[:, 1]), np.ptp(points[:, 2])
_log.info(f'x-range: {x_min:.2g} <-> {x_max:.2g} ({x_diff:.2g})')
_log.info(f'y-range: {y_min:.2g} <-> {y_max:.2g} ({y_diff:.2g})')
_log.info(f'z-range: {z_min:.2g} <-> {z_max:.2g} ({z_diff:.2g})')
# Determine dimensions from given grid spacing a:
dim = tuple(np.round(np.asarray((z_diff/scale[0], y_diff/scale[1], x_diff/scale[2]), dtype=int)))
assert all(dim) > 0, f'All dimensions of dim={dim} need to be > 0, please adjust the scale accordingly!'
z = z_min + scale[0] * (np.arange(dim[0]) + 0.5) # +0.5: shift to pixel center!
y = y_min + scale[1] * (np.arange(dim[1]) + 0.5) # +0.5: shift to pixel center!
x = x_min + scale[2] * (np.arange(dim[2]) + 0.5) # +0.5: shift to pixel center!
# Create points for new Euclidian grid; fliplr for (x, y, z) order:
points_euc = np.fliplr(np.asarray(list(itertools.product(z, y, x))))
# Make values 2D (if not already); double .T so that a new axis is added at the END (n, 1):
values = np.atleast_2d(values.T).T
# Prepare interpolated grid:
interpolation = np.empty(dim+(values.shape[-1],), dtype=np.float)
_log.info(f'Dimensions of new grid: {interpolation.shape}')
# Calculate the Delaunay triangulation (same for every component of multidim./vector fields):
_log.info('Start Delaunay triangulation...')
tick = time()
triangulation = qhull.Delaunay(points[::step])
tock = time()
_log.info(f'Delaunay triangulation complete (took {tock-tick:.2f} s)!')
# Perform the interpolation for each column of `values`:
for i in tqdm(range(values.shape[-1])):
# Create interpolator for the given triangulation and the values of the current column:
interpolator = LinearNDInterpolator(triangulation, values[::step, i], fill_value=0)
# Interpolate:
interpolation[..., i] = interpolator(points_euc).reshape(dim)
# If NOT convex, we have to check for additional holes in the structure (EXPERIMENTAL):
if not convex: # Only necessary if the user expects holes in the (-> nonconvex) distribution:
# Create k-dimensional tree for queries:
_log.info('Create cKDTree...')
tick = time()
tree = cKDTree(points)
tock = time()
_log.info(f'cKDTree creation complete (took {tock-tick:.2f} s)!')
# Query the tree for nearest neighbors, x: points to query, k: number of neighbors, p: norm
# to use (here: 2 - Euclidean), distance_upper_bound: maximum distance that is searched!
if distance_upper_bound is None: # Take the mean of the scale for the upper bound:
distance_upper_bound = 2 * np.mean(scale) # NOTE: could be problematic for wildly varying scale numbers.
else: # Convert to local scale:
distance_upper_bound *= scale_factor
_log.info('Start cKDTree neighbour query...')
tick = time()
data, leafsize = tree.query(x=points_euc, k=1, p=2, distance_upper_bound=distance_upper_bound)
tock = time()
_log.info(f'cKDTree neighbour query complete (took {tock-tick:.2f} s)!')
# Create boolean mask that determines which interpolation points have no neighbor near enough:
mask = np.isinf(data).reshape(dim) # Points further away than upper bound were marked 'inf'!
_log.info(f'{np.sum(mask)} of {points_euc.shape[0]} points were assumed to be in holes of the point cloud!')
# Set these points to zero (NOTE: This can take a looooong time):
interpolation[mask, :] = 0
return np.squeeze(interpolation)
def restrict_points(point_array, data_array, bounds):
"""Restrict range of point_array and data_array
Parameters
----------
points_array : np.ndarray, (N, 3)
Array of points, describing the location of the values that should be interpolated. Three columns x, y, z!
data_array : np.ndarray, (N, c)
Array of values that should be interpolated to the new grid. `c` is the number of components (`1` for scalar
fields, `3` for normal 3D vector fields).
bounds : tuple of 6 values
Restrict data range to given bounds, x0, x1, y0, y1, z0, z1.
Returns
-------
point_restricted: np.ndarray
Cut out of the array of points inside the bounds, describing the location of the values that should be
interpolated. Three columns x, y, z!
value_restricted: np.ndarray
Cut out of the array of values inside the bounds, describing the location of the values that should be
interpolated. Three columns x, y, z!
"""
point_restricted = []
data_restricted = []
for i, pos in enumerate(point_array):
if bounds[0] <= pos[0] <= bounds[1]:
if bounds[2] <= pos[1] <= bounds[3]:
if bounds[4] <= pos[2] <= bounds[5]:
point_restricted.append(pos)
data_restricted.append(data_array[i])
point_restricted = np.array(point_restricted)
data_restricted = np.array(data_restricted)
return point_restricted, data_restricted
# -*- coding: utf-8 -*-
# Copyright 2014 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""This module provides the :class:`~.Quaternion` class which can be used for rotations."""
import logging
import numpy as np
__all__ = ['Quaternion']
class Quaternion(object):
"""Class representing a rotation expressed by a quaternion.
A quaternion is a four-dimensional description of a rotation which can also be described by
a rotation vector (`v1`, `v2`, `v3`) and a rotation angle :math:`\theta`. The four components
are calculated to:
.. math::
w = \cos(\theta/2)
x = v_1 \cdot \sin(\theta/2)
y = v_2 \cdot \sin(\theta/2)
z = v_3 \cdot \sin(\theta/2)
Use the :func:`~.from_axisangle` and :func:`~.to_axisangle` to convert to axis-angle
representation and vice versa. Quaternions can be multiplied by other quaternions, which
results in a new rotation or with a vector, which results in a rotated vector.
Attributes
----------
values : float
The four quaternion values `w`, `x`, `y`, `z`.
"""
NORM_TOLERANCE = 1E-6
_log = logging.getLogger(__name__ + '.Quaternion')
@property
def conj(self):
"""The conjugate of the quaternion, representing a tilt in opposite direction."""
w, x, y, z = self.values
return Quaternion((w, -x, -y, -z))
@property
def matrix(self):
"""The rotation matrix representation of the quaternion."""
w, x, y, z = self.values
return np.array([[1 - 2 * (y ** 2 + z ** 2), 2 * (x * y - w * z), 2 * (x * z + w * y)],
[2 * (x * y + w * z), 1 - 2 * (x ** 2 + z ** 2), 2 * (y * z - w * x)],
[2 * (x * z - w * y), 2 * (y * z + w * x), 1 - 2 * (x ** 2 + y ** 2)]])
def __init__(self, values):
self._log.debug('Calling __init__')
self.values = values
self._normalize()
self._log.debug('Created ' + str(self))
def __mul__(self, other): # self * other
self._log.debug('Calling __mul__')
if isinstance(other, Quaternion): # Quaternion multiplication
return self.dot_quat(self, other)
elif len(other) == 3: # vector multiplication
q_vec = Quaternion((0,) + tuple(other))
q = self.dot_quat(self.dot_quat(self, q_vec), self.conj)
return q.values[1:]
def dot_quat(self, q1, q2):
"""Multiply two :class:`~.Quaternion` objects to create a new one (always normalized).
Parameters
----------
q1, q2 : :class:`~.Quaternion`
The quaternion which should be multiplied.
Returns
-------
quaternion : :class:`~.Quaternion`
The resulting quaternion.
"""
self._log.debug('Calling dot_quat')
w1, x1, y1, z1 = q1.values
w2, x2, y2, z2 = q2.values
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2
return Quaternion((w, x, y, z))
def _normalize(self):
self._log.debug('Calling _normalize')
mag2 = np.sum(n ** 2 for n in self.values)
if abs(mag2 - 1.0) > self.NORM_TOLERANCE:
mag = np.sqrt(mag2)
self.values = tuple(n / mag for n in self.values)
@classmethod
def from_axisangle(cls, vector, theta):
"""Create a quaternion from an axis-angle representation
Parameters
----------
vector : :class:`~numpy.ndarray` (N=3)
Vector around which the rotation is executed.
theta : float
Rotation angle.
Returns
-------
quaternion : :class:`~.Quaternion`
The resulting quaternion.
"""
cls._log.debug('Calling from_axisangle')
x, y, z = vector
theta /= 2.
w = np.cos(theta)
x *= np.sin(theta)
y *= np.sin(theta)
z *= np.sin(theta)
return cls((w, x, y, z))
def to_axisangle(self):
"""Convert the quaternion to axis-angle-representation.
Returns
-------
vector, theta : :class:`~numpy.ndarray` (N=3), float
Vector around which the rotation is executed and rotation angle.
"""
self._log.debug('Calling to_axisangle')
w, x, y, z = self.values
theta = 2.0 * np.arccos(w)
return np.array((x, y, z)), theta
# -*- coding: utf-8 -*-
# Copyright 2020 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""This module provides the :class:`~.Quaternion` class which can be used for rotations."""
import logging
import numpy as np
__all__ = ['Quaternion']
class Quaternion(object):
R"""Class representing a rotation expressed by a quaternion.
A quaternion is a four-dimensional description of a rotation which can also be described by
a rotation vector (`v1`, `v2`, `v3`) and a rotation angle :math:`\theta`. The four components
are calculated to:
.. math::
w = \cos(\theta/2)
x = v_1 \cdot \sin(\theta/2)
y = v_2 \cdot \sin(\theta/2)
z = v_3 \cdot \sin(\theta/2)
Use the :func:`~.from_axisangle` and :func:`~.to_axisangle` to convert to axis-angle
representation and vice versa. Quaternions can be multiplied by other quaternions, which
results in a new rotation or with a vector, which results in a rotated vector.
Attributes
----------
values : float
The four quaternion values `w`, `x`, `y`, `z`.
"""
NORM_TOLERANCE = 1E-6
_log = logging.getLogger(__name__ + '.Quaternion')
@property
def conj(self):
"""The conjugate of the quaternion, representing a tilt in opposite direction."""
w, x, y, z = self.values
return Quaternion((w, -x, -y, -z))
@property
def matrix(self):
"""The rotation matrix representation of the quaternion."""
w, x, y, z = self.values
return np.array([[1 - 2 * (y ** 2 + z ** 2), 2 * (x * y - w * z), 2 * (x * z + w * y)],
[2 * (x * y + w * z), 1 - 2 * (x ** 2 + z ** 2), 2 * (y * z - w * x)],
[2 * (x * z - w * y), 2 * (y * z + w * x), 1 - 2 * (x ** 2 + y ** 2)]])
def __init__(self, values):
self._log.debug('Calling __init__')
self.values = values
self._normalize()
self._log.debug('Created ' + str(self))
def __mul__(self, other): # self * other
self._log.debug('Calling __mul__')
if isinstance(other, Quaternion): # Quaternion multiplication
return self.dot_quat(self, other)
elif len(other) == 3: # vector multiplication (Caution: normalises!)
q_vec = Quaternion((0,) + tuple(other))
q = self.dot_quat(self.dot_quat(self, q_vec), self.conj)
return q.values[1:]
def _normalize(self):
self._log.debug('Calling _normalize')
mag2 = np.sum([n ** 2 for n in self.values])
if abs(mag2 - 1.0) > self.NORM_TOLERANCE:
mag = np.sqrt(mag2)
self.values = tuple(n / mag for n in self.values)
def dot_quat(self, q1, q2):
"""Multiply two :class:`~.Quaternion` objects to create a new one (always normalized).
Parameters
----------
q1, q2 : :class:`~.Quaternion`
The quaternion which should be multiplied.
Returns
-------
quaternion : :class:`~.Quaternion`
The resulting quaternion.
"""
self._log.debug('Calling dot_quat')
w1, x1, y1, z1 = q1.values
w2, x2, y2, z2 = q2.values
w = w1 * w2 - x1 * x2 - y1 * y2 - z1 * z2
x = w1 * x2 + x1 * w2 + y1 * z2 - z1 * y2
y = w1 * y2 + y1 * w2 + z1 * x2 - x1 * z2
z = w1 * z2 + z1 * w2 + x1 * y2 - y1 * x2
return Quaternion((w, x, y, z))
@classmethod
def from_axisangle(cls, vector, theta):
"""Create a quaternion from an axis-angle representation
Parameters
----------
vector : :class:`~numpy.ndarray` (N=3)
Vector around which the rotation is executed.
theta : float
Rotation angle.
Returns
-------
quaternion : :class:`~.Quaternion`
The resulting quaternion.
"""
cls._log.debug('Calling from_axisangle')
x, y, z = vector
theta /= 2.
w = np.cos(theta)
x *= np.sin(theta)
y *= np.sin(theta)
z *= np.sin(theta)
return cls((w, x, y, z))
def to_axisangle(self):
"""Convert the quaternion to axis-angle-representation.
Returns
-------
vector, theta : :class:`~numpy.ndarray` (N=3), float
Vector around which the rotation is executed and rotation angle.
"""
self._log.debug('Calling to_axisangle')
w, x, y, z = self.values
theta = 2.0 * np.arccos(w)
return np.array((x, y, z)), theta