Skip to content
Snippets Groups Projects
Commit a8833889 authored by Alex Kashuba's avatar Alex Kashuba
Browse files

First commit

parent cb4cf5b0
No related branches found
No related tags found
No related merge requests found
*.log
*.toc
*.blg
*.bbl
*.aux
*.out
*.synctex.gz
discussions
This diff is collapsed.
This diff is collapsed.
TODO 0 → 100644
=== 15 Juni 2022 ===
- 2nd order diagrams
- Luttinger results for self-energy
+ Compare with Romans limit: Wigner crystal works for small occupation
- 4th cumulant - Ivanov paper J Phys. A: Math. Theor. 46 (2013) 085003
- Luttinger theorem
=== 8 June 2022 ===
+ Physical density
+ Calculate Eq. 78 for p_F L ~ 1 though p_F << 1
- Compare with Romans limit
=== 17 May 2022 ===
- Physical density
+ Expansion over lambda
+ L dependence
+ Summarize rezults
+ V_1 to K correspondence
+ Prove all cumulants are real
- Check charge density wave in Giamarchi
\ No newline at end of file
This diff is collapsed.
chain.ai 0 → 100644
This diff is collapsed.
This diff is collapsed.
File added
File added
% !TEX TS-program = pdflatex
% !TEX encoding = UTF-8 Unicode
% !TEX spellcheck = English UK
\documentclass[10pt,fullpage,amsmath,amsthm]{amsart}
\usepackage{fullpage,graphicx}
\usepackage[colorlinks=false,urlcolor=blue,pdfborderstyle={/S/U/W 1}]{hyperref}
\usepackage[plain]{fancyref}
\usepackage{array,multirow}
%\usepackage[dvipsnames]{xcolor}
\title{Electrons counting}
\author{Oleks\'iy Kash\'uba}
\date{\today }
%\def\fileversion{\InputIfFileExists{.git/current_version}{\it version~}{\it unversioned}%
\def\fileversion{\it version~0.4\,%
%(\pdffilesize{\jobname.tex} bytes)}
\if\pdfstrcmp{\pdffilesize{\jobname.tex}}{18119}0{(original)}\else{(changed)}\fi}
\DeclareMathOperator{\Tr}{Tr}
\DeclareGraphicsExtensions{.pdf,.ai}
\DeclareGraphicsRule{.ai}{pdf}{.ai}{}
\makeatletter
\let\@paragraph\paragraph
\def\paragraph#1{\@paragraph{•#1}}
\makeatother
\newtheorem{theorem}{Theorem}
\newcommand*{\fancyrefthmlabelprefix}{thm}
\fancyrefaddcaptions{english}{\newcommand*{\Frefthmname}{Theorem}\newcommand*{\frefthmname}{\MakeLowercase{\Frefthmname}}}
\frefformat{plain}{\fancyrefthmlabelprefix}{\MakeUppercase{\frefthmname}\fancyrefdefaultspacing#1}
\Frefformat{plain}{\fancyrefthmlabelprefix}{\MakeUppercase{\Freffigname}\fancyrefdefaultspacing#1}
\begin{document}
\maketitle
{\parskip-\baselineskip\par\noindent {\hfill\raisebox{-\baselineskip}[0pt][0pt]{\fileversion}\hfill}}
%\tableofcontents
\section{Intro}
Let us calculate a trace for a non-interacting system
\begin{equation}
\Tr e^\mathcal{C}, \qquad \mathcal{C} = \sum_{mn}c_{m}^{\dagger} C_{mn}c_{n}
\end{equation}
Using the Schur decomposition~\cite{schdec} on a square complex matrix $C=U(\mathrm{diag}(\mu_{p}) + K)U^{+}$ where $K$ is upper triangular ($K_{pq}=0$ for $p\leq q$), and introducing new fermionic (since $U$ is unitary) operators $c_{p} = \sum_{n}U_{np}c_{p}$ we see that
\begin{equation}
\Tr e^\mathcal{C} = \Tr e^{\sum_{p}\mu_{p}c_{p}^{\dagger}c_{p} + \sum_{p>q}K_{pq}c_{p}^{\dagger} c_{q}} = \Tr e^{\sum_{p}\mu_{p}c_{p}^{\dagger}c_{p}}
=
\Tr \prod_{p}e^{\mu_{p}c_{p}^{\dagger}c_{p}}
=
\begin{cases}
\prod_{p} (1+ e^{\mu_{p}}) & \text{for fermions} \\
\prod_{p} \left(\sum_{n=0}^{\infty}e^{\mu_{p}n}\right) & \text{for bosons} \\
\end{cases}
\end{equation}
This gives us
\begin{align*}
&\Tr e^\mathcal{C} = \prod_{p} (1+ e^{\mu_{p}}) = \det (1+e^{\mathrm{diag}(\mu_{p}) + K}) = \det (1+e^C)
&& \text{for fermions}
\\
&\Tr e^\mathcal{C} = \prod_{p} \frac{1}{1- e^{\mu_{p}}} = \det (1-e^{\mathrm{diag}(\mu_{p}) + K})^{-1} = \det (1-e^C)^{-1}
&& \text{for bosons}
\end{align*}
or combining together,
\begin{equation}
\Tr \left(e^\mathcal{C}\right) = \det(1-\xi\,e^{C})^{-\xi},
\end{equation}
where $\xi=-1$ for fermions and $\xi=+1$ for bosons.
\begin{theorem}
\label{thm:expproddet}
The product of two exponents satisfies the following relation:
\begin{equation}
\Tr \left(e^\mathcal{A}e^\mathcal{B}\right) = \det(1-\xi\,e^{A}e^{B})^{-\xi}.
\end{equation}
\end{theorem}
\begin{proof}
Further we consider fermions.
We define two operators bilinear in $c^{\dagger}$ and $c$ and look at their commutator:
\begin{equation}
\mathcal{A} = \sum_{mn}c_{m}^{\dagger} A_{mn}c_{n}
\quad
\mathcal{B} = \sum_{kl}c_{k}^{\dagger} B_{kl}c_{l},
\qquad [ \mathcal{A}, \mathcal{B} ]_{-} = \sum_{mnkl} A_{mn} B_{kl}[c_{m}^{\dagger}c_{n},c_{k}^{\dagger}c_{l}]_{-}
=\sum_{mn} \left([A,B]_{-}\right)_{mn}c_{m}^{\dagger}c_{n}.
\label{eq:commut2out1}
\end{equation}
For compactness let us introduce the notation
\begin{equation}
A \oplus B = A+B+\frac{1}{2}[A,B]+\frac{1}{12}[A,[A,B]] - \frac{1}{12}[B,[A,B]]+\cdots
\end{equation}
and note also that due to the commutation of the bilinear in $c^\dagger$ and $c$ operators we get a relation
\begin{equation}
\mathcal{A} \oplus \mathcal{B} = \sum_{mn} \left( A \oplus B\right)_{mn}c_{m}^{\dagger}c_{n}.
\label{eq:oplus}
\end{equation}
Then we use Baker–Campbell–Hausdorff formula~\cite{bakcamhau}, which tells that exists such a matrix $C$, so that $C = A \oplus B$, such that $e^{A}e^{B}=e^{C}$.
So we get
\begin{equation}
\Tr \left(e^\mathcal{A}e^\mathcal{B}\right) = \Tr \left(e^\mathcal{C}\right) =\det(1+e^{C}) =\det(1+e^{A}e^{B}).
\end{equation}
Since \fref{eq:commut2out1} works also for bosons, the same logic can be applied.
\end{proof}
\begin{theorem}
\begin{equation}
\Tr \left(\prod_{i=1}^{N} e^{\mathcal{A}^{(i)}}\right) = \det\left(1-\xi\,\prod_{i=1}^{N} e^{A^{(i)}}\right)^{-\xi}
\end{equation}
\end{theorem}
\begin{proof}
Let us use the mathematical induction procedure.
A
We proved in \fref{thm:expproddet} that for $N=2$ theorem works.
Let us assume that it works for arbitrary $N\geq 2$, namely exists a matrix $C^{(N)}$ and corresponding bilinear in $c^{\dagger}$ and $c$ operator $\mathcal{C}^{(N)}$, such that
\begin{equation}
\Tr \left(\prod_{i=1}^{N} e^{\mathcal{A}^{(i)}}\right) = \Tr \left(e^{\mathcal{C}^{(N)}}\right) =\det(1-\xi \,e^{C^{(N)}})^{-\xi} =\det\left(1-\xi\,\prod_{i=1}^{N} e^{A^{(i)}}\right)^{-\xi}
\end{equation}
In order to prove the theorem, we need to show that it works for $N+1$ as well:
\begin{equation}
\Tr \left(\prod_{i=1}^{N+1} e^{\mathcal{A}^{(i)}}\right) = \Tr \left(e^{\mathcal{C}^{(N)}}e^{\mathcal{A}^{(N+1)}}\right)
=\ldots
\end{equation}
According to \fref{thm:expproddet} exists a matrix $C^{(N+1)} = C^{(N)}\oplus A^{(N+1)}$ such that
\begin{multline}
\ldots=
\Tr \left(e^{\mathcal{C}^{(N)}}e^{\mathcal{A}^{(N+1)}}\right) =
\det(1-\xi\,e^{C^{(N+1)}})^{-\xi} =\\=
\det\left(1-\xi\,e^{C^{(N)}} e^{A^{(N)}}\right)^{-\xi}
=
\det\left(1-\xi\,\prod_{i=1}^{N+1} e^{A^{(i)}}\right)^{-\xi}.
\end{multline}
Starting at $N=2$ we repeat the logic till the arbitrary value of $N$.
\end{proof}
%\begin{equation}
%
%\end{equation}•
\section{Levitov's determinant}
Following~\cite{Klich2002} we calculate the trace/determinant
\begin{equation}
\Tr\left(e^{-\beta \mathcal{H}} e^{i\lambda \mathcal{Q}}\right)= \det\left(1+ e^{-\beta H} e^{i\lambda Q}\right)
\end{equation}
where $H$ is a single-particle Hamiltonian ($N\times N$), while $Q$ is a sites projection matrix
\begin{equation}
H_{ij} =
\times
\begin{cases}
1/2 & |i-j|=1 \\
0 & \text{otherwise}
\end{cases}
\qquad
Q_{ij} = \delta_{ij}
\times
\begin{cases}
1 & n \leq i < n+l \\
0 & \text{otherwise}
\end{cases}
\end{equation}
\paragraph{Case $l=1$} It can be solved easily using matrix determinant lemma\footnote{%
Matrix determinant lemma\cite{matdetlem} tells us that
$$
\det\left(\mathbf{A} + \mathbf{uv}^\textsf{T}\right)
=
\det\left(\mathbf{A}\right) \left(1 + \mathbf{v}^\textsf{T} \left(\mathbf{A}^{-1}\mathbf{u}\right)\right).
$$}.
In this case
\begin{equation}
Q = v v^{T}, \qquad v_{i} = \delta_{in},
\end{equation}
so (note that $\det e^{-\beta H} = e^{-\beta\mathrm{Tr} H}$)
\begin{multline}
\det\left(1+ e^{-\beta H} e^{i\lambda v v^{T}}\right) =
e^{-\beta\mathrm{Tr} H} \det\left(e^{\beta H} + 1 + (e^{i\lambda}-1)v v^{T} \right) = \\ =
e^{-\beta\mathrm{Tr} H} \det\left(e^{\beta H} + 1 \right)\Bigl(1 + (e^{i\lambda}-1)v^{T}\left(e^{\beta H} + 1 \right)^{-1}v \Bigr)
\label{eq:singlelem}
\end{multline}
Thus, with normalized density matrix we get
\begin{equation}
\frac{\det\left(1+ e^{-\beta H} e^{i\lambda v v^{T}}\right)}{\det\left(1+ e^{-\beta H}\right)} =
1 + (e^{i\lambda}-1)\left[\left(e^{\beta H} + 1 \right)^{-1}\right]_{nn}
\end{equation}
%\paragraph{Induction} Let us define $P_{k}=v_{k} v_{k}^{T}$, $\gamma=e^{i\lambda}-1$ and $A_{n} = e^{-\beta H} \prod_{k=1}^{n}e^{i\lambda P_{k}}$.
%Then we get
%\begin{equation}
%1+ A_{n} = 1+ A_{n-1} + \gamma A_{n-1} P_{n}
%\end{equation}
%
%\begin{multline}
%\det\left(1+ A_{n}\right) =
%\det\left(1+ A_{n-1} e^{i\lambda P_{n}}\right) =
%\det A_{n-1} \det\left(A_{n-1}^{-1} + 1 + \gamma P_{n} \right) = \\ =
%\frac{1 + \gamma v_{n}^{T}\left( 1 - (1+A_{n-1})^{-1}\right)^{-1}v_{n}}{\det \left((1+A_{n-1})^{-1}\right)}
%\end{multline}
\paragraph{General $l$} Let us define rectangular matrix $N\times l$ such that $P_{ij}=Q_{ij}$ and $\gamma=e^{i\lambda}-1$.
Then we get
\begin{multline}
\det\left(1+ e^{-\beta H} e^{i\lambda P P^{T}}\right) =
e^{-\beta\mathrm{Tr} H}
\det\left(e^{\beta H} + 1 + \gamma P P^{T}\right) = \\=
\det\left(1+ e^{-\beta H}\right)\det\left(1+ \gamma\left(1 + e^{\beta H}\right)^{-1} P P^{T} \right)
\end{multline}
So instead of the determinant $N\times N$ we calculate determinant $l\times l$ (see also~\cite{matdetlem}):
\begin{equation}
\frac{\det\left(1+ e^{-\beta H} e^{i\lambda v v^{T}}\right)}{\det\left(1+ e^{-\beta H}\right)} =
\det\left(1+ \gamma P^{T}\left(1+ e^{\beta H}\right)^{-1} P \right)
\label{eq:average}
\end{equation}
\paragraph{Diagonalisation}
To diagonalise the $N$-sites chain with periodic boundary conditions we need unitary matrix
\begin{equation}
U = \frac{1}{\sqrt N} e^{2\pi i k m/N}, \qquad k,m = 1..N
\end{equation}
Thus the \fref{eq:average} is equal to
\begin{equation}
\det\left(1+ \gamma A \right),
\qquad
A_{mn} = \frac{1}{N} \sum_{k=1}^{N}\frac{e^{2\pi i k (n-m)/N}}{1+e^{\beta \epsilon_{k}}},
\qquad
n,m=1..l,
\qquad
\epsilon_{k} = \cos\frac{2\pi k}{N}-\epsilon_{F}
\end{equation}
\paragraph{Limits} In our case we take the limit $N\to \infty$ first, and only then $l\to \infty$.
The first limit allow us to define $2\pi k /N \to p \in [0..2\pi]$, so that
\begin{equation}
A_{mn} = A_{n-m},
\qquad
A_{s}=\int_{-\pi}^{\pi}\frac{dp}{2\pi} e^{i p s} n_{p},
\qquad
n_{p}=\frac{1}{1+e^{\beta \varepsilon_{p}}},
\qquad
s=-l..l,
\qquad
\varepsilon_{p} = \varepsilon_{F} - \cos p,
\quad
\varepsilon_{F} = \cos p_{F}
\end{equation}
The matrix element $c_{n}=\delta_{n0}+\gamma A_{n}$ used in book \cite{McCoyWu1973}, the function $C(e^{ip})$ is
\begin{equation}
C(e^{ip}) = 1+\gamma n_{p}
\end{equation}
and the determinant is
\begin{gather}
\det(1+\gamma A) \approx \exp\left( g_{0} l + \sum_{l'=1}^{l} l' g_{l'}g_{-l'}\right),
\qquad
g_{l} = \int_{-\pi}^{\pi}\frac{dp}{2\pi} e^{i p l} \log(1+\gamma n_{p}),
\end{gather}
For $\beta\to\infty$ we get $n_{F} = \langle c_{n}^{\dagger}c_{n}\rangle = p_{F}/\pi$, so
\begin{equation}
g_{l} = i\lambda \int_{-p_{F}}^{p_{F}}\frac{dp}{2\pi} e^{i p l} =
i\lambda
\begin{cases}
\displaystyle \frac{p_{F}}{\pi} & l=0
\\[10pt]
\displaystyle \frac{\sin(p_{F} l)}{\pi l} & l\ne 0
\end{cases}
\end{equation}
The latter sum in exponent gives us
\begin{equation}
\sum_{l'=1}^{l} l' g_{l'}g_{-l'} = -\frac{\lambda^{2}}{2\pi^{2}} \sum_{l'=1}^{l} \frac{1-\cos(2p_{F} l')}{l'}
\approx \gamma_\text{Euler} + \log(2 l \sin p_{F})
\end{equation}
So
\begin{equation}
\det(1+\gamma A) \approx e^{i\lambda c l - \frac{\lambda^{2}}{2\pi^{2}}\log(l/l_{0})},
\qquad
l_{0} = \frac{e^{-\gamma_\text{Euler}}}{2 \sin p_{F}}
\end{equation}
\begin{figure}
\centering
\includegraphics[scale=0.5]{l0cplot}
\caption{Length scale $l_{0}$ as a function of occupation $n_{F}\equiv \langle c^{+}_{n}c_{n}\rangle=p_{F}/\pi$}
\label{fig:l0cplot}
\end{figure}
\section{Corellator}
Let us calculate the trace
\begin{equation}
\Tr\left[ e^{-\beta \mathcal{H}}c_{n}^{\dagger}c_{m} e^{i\lambda\mathcal{Q}}\right]
\end{equation}
The pair of creation/destruction operators can be written as
\begin{equation}
e^{\alpha c_{n}^{\dagger}c_{n}} = 1+(e^{\alpha}-1) c_{n}^{\dagger}c_{n}
\qquad
e^{\alpha c_{n}^{\dagger}c_{m\ne n}} = 1 + \alpha c_{n}^{\dagger}c_{m}
\end{equation}
or, vice verse,
\begin{equation}
c_{n}^{\dagger}c_{n} = \frac{e^{\alpha c_{n}^{\dagger}c_{n}}-1}{e^{\alpha}-1}
\qquad
c_{n}^{\dagger}c_{m\ne n} = \frac{e^{\alpha c_{n}^{\dagger}c_{m}}-1}{\alpha}
\end{equation}
For the $n=m$ we get using \fref{eq:singlelem}, and the commutation of the exponents in determinant\footnote{%
$$
\det(1+AB) = \det A \, \det (A^{-1}+B) = \frac{1}{\det A^{-1}} \, \det (A^{-1}+B) = \det (A^{-1}A+BA) = \det (1+BA)
$$}
\begin{multline}
\Tr\left[ e^{-\beta \mathcal{H}}c_{n}^{\dagger}c_{n} e^{i\lambda\mathcal{Q}}\right]
=
\frac{1}{e^{\alpha}-1}\left( \Tr\left[ e^{-\beta \mathcal{H}} e^{\alpha \mathcal{Q}'} e^{i\lambda\mathcal{Q}}\right] -\Tr\left[ e^{-\beta \mathcal{H}} e^{i\lambda\mathcal{Q}}\right] \right)
=\\=
\frac{1}{e^{\alpha}-1}\left( \Tr\left[ e^{i\lambda\mathcal{Q}} e^{-\beta \mathcal{H}} e^{\alpha \mathcal{Q}'} \right] -\Tr\left[ e^{i\lambda\mathcal{Q}} e^{-\beta \mathcal{H}} \right] \right)
=\\=
\frac{1}{e^{\alpha}-1}\left( \det\left[1+ e^{i\lambda Q}e^{-\beta H} e^{\alpha vv^{T}}\right] -\det\left[1+ e^{i\lambda Q} e^{-\beta H}\right] \right)
=\\=
\frac{1}{e^{\alpha}-1}\left(
\det\left[1 + e^{i\lambda Q}e^{-\beta H} + (e^{\alpha}-1) e^{i\lambda Q}e^{-\beta H} vv^{T} \right] - \det\left[1+e^{i\lambda Q} e^{-\beta H} \right]\right)
=\\=
\frac{1}{e^{\alpha}-1}\left( \det\left[e^{i\lambda Q}e^{-\beta H}\right]
\det\left[e^{\beta H}e^{-i\lambda Q} + 1 + (e^{\alpha}-1) vv^{T} \right] - \det\left[1+e^{i\lambda Q} e^{-\beta H} \right]\right)
=\\=
\frac{1}{e^{\alpha}-1}\left(
\det\left[1 + e^{i\lambda Q}e^{-\beta H} \right]\Bigl(1 + (e^{\alpha}-1)v^{T}\left(e^{\beta H}e^{-i\lambda Q} + 1 \right)^{-1}v \Bigr) - \det\left[1+e^{i\lambda Q} e^{-\beta H} \right]\right)
=\\=
\det\left[1 + e^{i\lambda Q}e^{-\beta H} \right]
\Bigl[\left(e^{\beta H}e^{-i\lambda Q} + 1 \right)^{-1} \Bigr]_{nn}
\end{multline}
where $\mathcal{Q}' = c^\dagger_{n}c_{n}$.
For the $n\ne m$ we get (here $u_{i} = \delta_{im}$)
\begin{multline}
\Tr\left[ e^{-\beta \mathcal{H}}c_{n}^{\dagger}c_{m} e^{i\lambda\mathcal{Q}}\right]
=
\frac{1}{\alpha}\left( \det\left[ e^{-\beta H} e^{\alpha vu^{T}} e^{i\lambda Q}\right] -\det\left[ e^{-\beta H} e^{i\lambda Q}\right] \right)
=\\=
\frac{1}{\alpha}\left(
\det\left[1 + e^{i\lambda Q}e^{-\beta H} + \alpha e^{i\lambda Q}e^{-\beta H} vu^{T} \right] - \det\left[1+e^{i\lambda Q} e^{-\beta H} \right]\right)
=\\=
\frac{1}{\alpha}\left(
\det\left[1 + e^{i\lambda Q}e^{-\beta H} \right]\Bigl(1 + \alpha u^{T}\left(e^{\beta H}e^{-i\lambda Q} + 1 \right)^{-1}v \Bigr) - \det\left[1+e^{i\lambda Q} e^{-\beta H} \right]\right)
=\\=
\det\left[1 + e^{i\lambda Q}e^{-\beta H} \right]
\Bigl[\left(e^{\beta H}e^{-i\lambda Q} + 1 \right)^{-1} \Bigr]_{mn}
\end{multline}
Thus, for arbitrary $m$ and $n$ we get (note the oder of indices)\footnote{We used
$\langle c_{m}c_{n}^{\dagger}e^{i\lambda\mathcal{Q}}\rangle = \langle e^{i\lambda\mathcal{Q}}\rangle \delta_{mn} - \langle c_{n}^{\dagger}c_{m}e^{i\lambda\mathcal{Q}}\rangle$}
\begin{align}
\left< c_{n}^{\dagger}c_{m} e^{i\lambda\mathcal{Q}}\right> &=
\left< e^{i\lambda\mathcal{Q}}\right>\Bigl[\left(e^{\beta H}e^{-i\lambda Q}+1\right)^{-1} \Bigr]_{mn},
\\
\left< c_{m}c_{n}^{\dagger} e^{i\lambda\mathcal{Q}}\right> &=
\left< e^{i\lambda\mathcal{Q}}\right>\Bigl[1-\left(e^{\beta H}e^{-i\lambda Q}+1\right)^{-1} \Bigr]_{mn},
\end{align}
\newpage
\appendix
\section{First Szeg\"o theorem}
Let say we have a Toeplitz matrix $N\times N$ thus $T^{(N)}_{nm} = c_{n-m}$.
Imagine we have a matrix equation
\begin{equation}
\sum_{m=0}^{N-1}c_{n-m}x^{(N)}_{m} = \delta_{n0},\qquad n=0..N-1
\label{eq:auxmateq}
\end{equation}
Then
\begin{equation}
x_{0}^{(N)} = \frac{\det T^{(N-1)}}{\det T^{(N)}}
\end{equation}
If summation in Eq.~\eqref{eq:auxmateq} were from $m = -\infty .. +\infty$, the Fourier transform would be very useful.
Let us try it anyway:
\begin{equation}
x_{m} = \frac{1}{ N}\sum_{q=0}^{N-1} e ^{-2\pi i q m/N} y_{q}
\end{equation}
Substitutin and taking reverse transform we get
\begin{equation}
\sum_{q=0}^{N-1} \left[ \frac{1}{ N} \sum_{n,m=0}^{N-1}e ^{2\pi i (p n - q m)/N} c_{n-m} \right] y_{q} = 1
\end{equation}
The sum can be rewritten as
\begin{equation}
\sum_{n,m=0}^{N-1} X_{nm}= \sum_{n=0}^{N-1}X_{nn} + \sum_{s=1}^{N-1} \sum_{n=0}^{N-1-s} X_{n,n+s} + \sum_{s=1}^{N-1} \sum_{n=s}^{N-1} X_{n,n-s}
\end{equation}
Since $c_{n-m}$ is symmetric,
\begin{multline}
\frac{1}{N} \sum_{n,m=0}^{N-1}e ^{2\pi i (p n - q m)/N} c_{n-m} = \\ =
\frac{1}{N}\sum_{n=0}^{N-1}e ^{2\pi i (p - q)n/N} c_{0} + \frac{1}{N}\sum_{s=1}^{N-1} \sum_{n=0}^{N-1-s} e ^{2\pi i ((p - q)n - q s)/N} c_{s} + \frac{1}{N}\sum_{s=1}^{N-1} \sum_{n=s}^{N-1} e ^{2\pi i ((p - q)n + q s)/N} c_{s} = \\ =
\frac{1}{N}\sum_{n=0}^{N-1}e ^{2\pi i (p - q)n/N} c_{0} + \frac{1}{N}\sum_{s=1}^{N-1} \sum_{n=0}^{N-1-s} e ^{2\pi i ((p - q)n - q s)/N} c_{s} + \frac{1}{N}\sum_{s=1}^{N-1} \sum_{n=s}^{N-1} e ^{2\pi i ((p - q)n + q s)/N} c_{s}
\end{multline}
For $p=q$ we get
\begin{equation}
\text{for $p=q$}\quad c_{0} + 2 \sum_{s=1}^{N-1} \frac{N-s}{N} \cos \left(\frac{2\pi q s}{N}\right) c_{s}
\end{equation}
For $p\ne q$ we get
\begin{multline}
\text{for $p\ne q$}\quad
\frac{1}{N}\sum_{s=1}^{N-1} \frac{e ^{2\pi i(p - q)(N-s)/N}-1}{e ^{2\pi i(p - q)/N}-1} e ^{-2\pi i q s/N} c_{s} + \frac{1}{N}\sum_{s=1}^{N-1} \frac{e^{2\pi i(p - q)N/N}-e ^{2\pi i(p - q)s/N}}{e^{2\pi i(p - q)/N}-1} e ^{2\pi i q s/N} c_{s}
= \\ =
\frac{1}{N}
\frac{1}{e ^{2\pi i(p - q)/N}-1}
\sum_{s=1}^{N-1} \left[ e ^{-2\pi ips/N}-e ^{-2\pi i q s/N} + e ^{2\pi i q s/N} - e ^{2\pi ips/N} \right] c_{s}
=\\=
\frac{-2i}{N}
\frac{1}{e ^{2\pi i(p - q)/N}-1}
\sum_{s=1}^{N-1} \left[ \sin(2\pi ps/N) - \sin(2\pi qs/N) \right] c_{s}
\end{multline}
Together this can be written as
\begin{equation}
\delta_{pq} \left(c_{0} + 2 \sum_{s=1}^{\infty} \cos \left(\frac{2\pi q s}{N}\right) c_{s} \right)
+
(1-\delta_{pq})\frac{-2i}{N}
\frac{1}{e ^{2\pi i(p - q)/N}-1}
\sum_{s=1}^{\infty} \left[ \sin(2\pi ps/N) - \sin(2\pi qs/N) \right] c_{s}
\end{equation}
\subsection{Aristov case}
In the Aristov's case we have
\begin{equation}
c_{s} = \frac{\sin \pi c s}{\pi s},
\qquad
\sum_{s=1}^{\infty} e^{2\pi i p s /N} c_{s} = \frac{i}{2\pi}\log\frac{1-e^{i\pi c + 2\pi i p /N}}{1-e^{-i\pi c + 2\pi i p /N}}
\end{equation}
get
\begin{equation}
\delta_{pq} \left(1+\gamma c + \frac{i}{\pi} \gamma \log
\frac{1-e^{i\pi c + 2\pi i p /N}}{1-e^{-i\pi c + 2\pi i p /N}}
\frac{1-e^{i\pi c - 2\pi i p /N}}{1-e^{-i\pi c - 2\pi i p /N}} \right)
\end{equation}
In this case the solution is easy and equal
\begin{equation}
x_{0} = \left(1+\gamma c + \frac{i}{\pi} \gamma \log\frac{1-e^{i\pi c}}{1-e^{-i\pi c}} \right)^{-1}
\end{equation}
\section{Hubbart-Stratanovich with auxiliary fermionic field}
\begin{equation}
\mathrm{Tr}_{d} \left[e^{i \lambda d^{+} d} e^{i \frac{\pi}{2} (d^{+} a + a^{+} d)}\right] = e^{i\lambda a^{+}a}
\end{equation}
\bibliographystyle{amsplain}
\bibliography{../../literature/quantinfo, localcites}
\end{document}
File added
File added
diagparts.ai 0 → 100644
This diff is collapsed.
diagsplit.ai 0 → 100644
This diff is collapsed.
File added
File added
File added
File added
File added
goology.ai 0 → 100644
This diff is collapsed.
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment