Skip to content
Snippets Groups Projects
Commit bc27f711 authored by Alex Kashuba's avatar Alex Kashuba
Browse files

SC determinant

parent a050fb11
No related branches found
No related tags found
No related merge requests found
......@@ -11,3 +11,4 @@ determinant.pdf
fig?.jpg
perturbative.pdf
determinant-v1.1.pdf
determinant-v1.2.pdf
......@@ -17,7 +17,7 @@
%\def\fileversion{\InputIfFileExists{.git/current_version}{\it version~}{\it unversioned}%
\def\fileversion{\it version~1.1\,%
\def\fileversion{\it version~1.2\,%
%(\pdffilesize{\jobname.tex} bytes)}
\if\pdfstrcmp{\pdffilesize{\jobname.tex}}{21446}0{(original)}\else{(changed)}\fi}
......@@ -374,6 +374,147 @@ $\langle c_{m}c_{n}^{\dagger}e^{i\lambda\mathcal{Q}}\rangle = \langle e^{i\lambd
\end{align}
\section{Superconducting case}
Let us consider the hermitian operator of type
\begin{gather}
\widetilde{\mathcal{C}} =
\sum_{ij}\left[
a^{\dagger}_{i} C^{(0)}_{ij} a_{j}
-
\frac12 a_{i}C_{ij}^{(1)*}a_{j} + \frac12 a_{i}^{\dagger}C_{ij}^{(1)}a_{j}^{\dagger}
\right]
=
\frac12
\Tr C^{(0)}
+
\frac12
{\mathcal{C}}
\\
{\mathcal{C}} =
\begin{pmatrix}
a^{\dagger}
&
a
\end{pmatrix}
C
\begin{pmatrix}
a
\\
a^{\dagger}
\end{pmatrix},
\quad
C=
\begin{pmatrix}
C^{(0)} & C^{(1)}
\\
-{C^{(1)}}^{*} & -{C^{(0)}}^\mathsf{T}
\end{pmatrix}
\end{gather}
Bogolyubov transformation will bring us to
\begin{equation}
\begin{pmatrix}
a
\\
a^{\dagger}
\end{pmatrix}
=
U
\begin{pmatrix}
c
\\
c^{\dagger}
\end{pmatrix}
\quad
\mathcal{C} =
\sum_{i}\lambda_{i}\left[
c^{\dagger}_{i} c_{i}
-
c_{i} c_{i}^{\dagger}
\right]
\end{equation}
Thus,
\begin{multline}
\left[\Tr e^{\mathcal{C}/2}\right]^{2} = \left[\prod_{i=1}^{n} (e^{\lambda_{i}/2}+ e^{-\lambda_{i}/2})\right]^{2}
= \prod_{i=1}^{n} (e^{\lambda_{i}/2}+ e^{-\lambda_{i}/2})(e^{-\lambda_{i}/2}+ e^{\lambda_{i}/2})
=\prod_{i=1}^{n} (1+ e^{-\lambda_{i}})(1+ e^{\lambda_{i}})
=\\= \det\left(1+\exp\left\{
\begin{pmatrix}
\Lambda & 0 \\ 0 & -\Lambda
\end{pmatrix}
\right\}\right) = \det\left(1+\exp\left\{
\begin{pmatrix}
C^{(0)} & C^{(1)} \\ -{C^{(1)}}^{*} & -{C^{(0)}}^\mathsf{T}
\end{pmatrix}
\right\}\right)
\end{multline}
So,
\begin{equation}
\Tr e^{\widetilde{\mathcal{C}}} = e^{\frac12 \Tr C^{(0)}}\left[\det(1+e^{C})\right]^{1/2}=
\left[\det(1+e^{C})\det e^{C^{(0)}}\right]^{1/2}
\end{equation}
\subsection{Commutation rules}
\begin{gather}
\mathcal{A} = \sum_{mn} \left[ A_{mn}^{(0)}c_{m}^{\dagger} c_{n} + A_{mn}^{(1)}c_{m}^{\dagger} c_{n}^{\dagger} + A_{mn}^{(2)}c_{m} c_{n}\right],
\qquad
\mathcal{B} = \sum_{kl} \left[ B_{kl}^{(0)}c_{k}^{\dagger} c_{l} + B_{kl}^{(1)}c_{k}^{\dagger} c_{l}^{\dagger} + B_{kl}^{(2)}c_{k} c_{l} \right],
%\label{eq:commut2out1}
\end{gather}
The commutator is
\begin{align*}
[ \mathcal{A}, \mathcal{B} ]_{-} =&
\sum_{mnkl} A_{mn}^{(0)} B_{kl}^{(0)}[c_{m}^{\dagger}c_{n},c_{k}^{\dagger}c_{l}]_{-}
&&= \sum_{mn} \left([A^{(0)},B^{(0)}]_{-}\right)_{mn}c_{m}^{\dagger}c_{n}
\\+&
\sum_{mnkl} \left(A_{mn}^{(0)}B_{kl}^{(2)} - B_{mn}^{(0)}A_{kl}^{(2)} \right) [c_{m}^{\dagger}c_{n},c_{k}c_{l}]_{-}
&&= \sum_{mn} (-2) \left(B^{(2)} A^{(0)} + A^{(2)} B^{(0)} \right)_{mn}c_{m}c_{n}
\\+&
\sum_{mnkl} \left(A_{mn}^{(0)} B_{kl}^{(1)} + B_{mn}^{(0)} A_{kl}^{(1)}\right)[c_{m}^{\dagger}c_{n},c_{k}^{\dagger}c_{l}^{\dagger}]_{-}
&&= \sum_{mn} (+2) \left(A^{(0)}B^{(1)} + B^{(0)} A^{(1)}\right)_{mn}c_{m}^{\dagger}c_{n}^{\dagger}
\\+&
\sum_{mnkl} \left(A_{mn}^{(1)} B_{kl}^{(2)} + B_{mn}^{(1)} A_{kl}^{(2)}\right)[c_{m}^{\dagger}c_{n}^{\dagger},c_{k}c_{l}]_{-}
&&= \sum_{mn} (+2)\left([A^{(1)},B^{(2)}]_{-} + [B^{(1)},A^{(2)}]_{-}\right)_{mn}c_{m}^{\dagger}c_{n}
\end{align*}
If we compare with the expression
\begin{multline}
%\frac14
\left[
\begin{pmatrix}
A^{(0)} & A^{(1)} \\ A^{(2)} & A^{(0)\mathsf{T}}
\end{pmatrix},
\begin{pmatrix}
B^{(0)} & B^{(1)} \\ B^{(2)} & B^{(0)\mathsf{T}}
\end{pmatrix}
\right]_{-} = \\=
\begin{pmatrix}
[A^{(0)},B^{(0)}]_{-} + A^{(1)}B^{(2)} - B^{(1)}A^{(2)} &
A^{(0)}B^{(1)} + A^{(1)}B^{(0)\mathsf{T}} - B^{(0)}A^{(1)} - B^{(1)}A^{(0)\mathsf{T}}
\\
A^{(2)}B^{(0)} + A^{(0)\mathsf{T}}B^{(2)} - B^{(2)} A^{(0)} - B^{(0)\mathsf{T}} A^{(2)} &
[A^{(0)\mathsf{T}},B^{(0)\mathsf{T}}]_{-} + A^{(2)}B^{(1)} - B^{(2)}A^{(1)}
\end{pmatrix}
\end{multline}
we'll see that the commutator of operators is equivalent to the commutator of their Nambu matrices.
Note that if $A^{(2)}=-A^{(1)*}$ and $B^{(2)}=-B^{(1)*}$ then the same is true for their commutator.
\subsection{Charge on the line}
\begin{equation}
\langle e^{i\lambda\mathcal{Q}} \rangle = \frac{\Tr \left[e^{i\lambda\mathcal{Q}} e^{-\beta \mathcal{H}}\right]}{\Tr \left[e^{-\beta \mathcal{H}}\right]}
= e^{i\lambda L/2} \left[ \frac{\det \left[1+e^{i\lambda Q} e^{-\beta H}\right]}{\det \left[1+ e^{-\beta H}\right]} \right]^{1/2}
\qquad
Q =
\begin{pmatrix}
\widetilde{Q} & 0 \\ 0 & -\widetilde{Q}
\end{pmatrix}
\end{equation}
\newpage
\appendix
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment