Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
F
Fractionalization
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Oleksiy Kashuba
Fractionalization
Commits
bc27f711
Commit
bc27f711
authored
1 year ago
by
Alex Kashuba
Browse files
Options
Downloads
Patches
Plain Diff
SC determinant
parent
a050fb11
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
.gitignore
+1
-0
1 addition, 0 deletions
.gitignore
determinant.tex
+142
-1
142 additions, 1 deletion
determinant.tex
with
143 additions
and
1 deletion
.gitignore
+
1
−
0
View file @
bc27f711
...
...
@@ -11,3 +11,4 @@ determinant.pdf
fig?.jpg
perturbative.pdf
determinant-v1.1.pdf
determinant-v1.2.pdf
This diff is collapsed.
Click to expand it.
determinant.tex
+
142
−
1
View file @
bc27f711
...
...
@@ -17,7 +17,7 @@
%\def\fileversion{\InputIfFileExists{.git/current_version}{\it version~}{\it unversioned}%
\def\fileversion
{
\it
version~1.
1
\,
%
\def\fileversion
{
\it
version~1.
2
\,
%
%(\pdffilesize{\jobname.tex} bytes)}
\if\pdfstrcmp
{
\pdffilesize
{
\jobname
.tex
}}{
21446
}
0
{
(original)
}
\else
{
(changed)
}
\fi
}
...
...
@@ -374,6 +374,147 @@ $\langle c_{m}c_{n}^{\dagger}e^{i\lambda\mathcal{Q}}\rangle = \langle e^{i\lambd
\end{align}
\section
{
Superconducting case
}
Let us consider the hermitian operator of type
\begin{gather}
\widetilde
{
\mathcal
{
C
}}
=
\sum
_{
ij
}
\left
[
a
^{
\dagger
}_{
i
}
C
^{
(0)
}_{
ij
}
a
_{
j
}
-
\frac
12 a
_{
i
}
C
_{
ij
}^{
(1)*
}
a
_{
j
}
+
\frac
12 a
_{
i
}^{
\dagger
}
C
_{
ij
}^{
(1)
}
a
_{
j
}^{
\dagger
}
\right
]
=
\frac
12
\Tr
C
^{
(0)
}
+
\frac
12
{
\mathcal
{
C
}}
\\
{
\mathcal
{
C
}}
=
\begin{pmatrix}
a
^{
\dagger
}
&
a
\end{pmatrix}
C
\begin{pmatrix}
a
\\
a
^{
\dagger
}
\end{pmatrix}
,
\quad
C=
\begin{pmatrix}
C
^{
(0)
}
&
C
^{
(1)
}
\\
-
{
C
^{
(1)
}}^{
*
}
&
-
{
C
^{
(0)
}}^
\mathsf
{
T
}
\end{pmatrix}
\end{gather}
Bogolyubov transformation will bring us to
\begin{equation}
\begin{pmatrix}
a
\\
a
^{
\dagger
}
\end{pmatrix}
=
U
\begin{pmatrix}
c
\\
c
^{
\dagger
}
\end{pmatrix}
\quad
\mathcal
{
C
}
=
\sum
_{
i
}
\lambda
_{
i
}
\left
[
c
^{
\dagger
}_{
i
}
c
_{
i
}
-
c
_{
i
}
c
_{
i
}^{
\dagger
}
\right
]
\end{equation}
Thus,
\begin{multline}
\left
[\Tr e^{\mathcal{C}/2}\right]
^{
2
}
=
\left
[\prod_{i=1}^{n} (e^{\lambda_{i}/2}+ e^{-\lambda_{i}/2})\right]
^{
2
}
=
\prod
_{
i=1
}^{
n
}
(e
^{
\lambda
_{
i
}
/2
}
+ e
^{
-
\lambda
_{
i
}
/2
}
)(e
^{
-
\lambda
_{
i
}
/2
}
+ e
^{
\lambda
_{
i
}
/2
}
)
=
\prod
_{
i=1
}^{
n
}
(1+ e
^{
-
\lambda
_{
i
}}
)(1+ e
^{
\lambda
_{
i
}}
)
=
\\
=
\det\left
(1+
\exp\left\{
\begin{pmatrix}
\Lambda
&
0
\\
0
&
-
\Lambda
\end{pmatrix}
\right\}\right
) =
\det\left
(1+
\exp\left\{
\begin{pmatrix}
C
^{
(0)
}
&
C
^{
(1)
}
\\
-
{
C
^{
(1)
}}^{
*
}
&
-
{
C
^{
(0)
}}^
\mathsf
{
T
}
\end{pmatrix}
\right\}\right
)
\end{multline}
So,
\begin{equation}
\Tr
e
^{
\widetilde
{
\mathcal
{
C
}}}
= e
^{
\frac
12
\Tr
C
^{
(0)
}}
\left
[\det(1+e^{C})\right]
^{
1/2
}
=
\left
[\det(1+e^{C})\det e^{C^{(0)}}\right]
^{
1/2
}
\end{equation}
\subsection
{
Commutation rules
}
\begin{gather}
\mathcal
{
A
}
=
\sum
_{
mn
}
\left
[ A_{mn}^{(0)}c_{m}^{\dagger} c_{n} + A_{mn}^{(1)}c_{m}^{\dagger} c_{n}^{\dagger} + A_{mn}^{(2)}c_{m} c_{n}\right]
,
\qquad
\mathcal
{
B
}
=
\sum
_{
kl
}
\left
[ B_{kl}^{(0)}c_{k}^{\dagger} c_{l} + B_{kl}^{(1)}c_{k}^{\dagger} c_{l}^{\dagger} + B_{kl}^{(2)}c_{k} c_{l} \right]
,
%\label{eq:commut2out1}
\end{gather}
The commutator is
\begin{align*}
[
\mathcal
{
A
}
,
\mathcal
{
B
}
]
_{
-
}
=
&
\sum
_{
mnkl
}
A
_{
mn
}^{
(0)
}
B
_{
kl
}^{
(0)
}
[c
_{
m
}^{
\dagger
}
c
_{
n
}
,c
_{
k
}^{
\dagger
}
c
_{
l
}
]
_{
-
}
&&
=
\sum
_{
mn
}
\left
([A
^{
(0)
}
,B
^{
(0)
}
]
_{
-
}
\right
)
_{
mn
}
c
_{
m
}^{
\dagger
}
c
_{
n
}
\\
+
&
\sum
_{
mnkl
}
\left
(A
_{
mn
}^{
(0)
}
B
_{
kl
}^{
(2)
}
- B
_{
mn
}^{
(0)
}
A
_{
kl
}^{
(2)
}
\right
) [c
_{
m
}^{
\dagger
}
c
_{
n
}
,c
_{
k
}
c
_{
l
}
]
_{
-
}
&&
=
\sum
_{
mn
}
(-2)
\left
(B
^{
(2)
}
A
^{
(0)
}
+ A
^{
(2)
}
B
^{
(0)
}
\right
)
_{
mn
}
c
_{
m
}
c
_{
n
}
\\
+
&
\sum
_{
mnkl
}
\left
(A
_{
mn
}^{
(0)
}
B
_{
kl
}^{
(1)
}
+ B
_{
mn
}^{
(0)
}
A
_{
kl
}^{
(1)
}
\right
)[c
_{
m
}^{
\dagger
}
c
_{
n
}
,c
_{
k
}^{
\dagger
}
c
_{
l
}^{
\dagger
}
]
_{
-
}
&&
=
\sum
_{
mn
}
(+2)
\left
(A
^{
(0)
}
B
^{
(1)
}
+ B
^{
(0)
}
A
^{
(1)
}
\right
)
_{
mn
}
c
_{
m
}^{
\dagger
}
c
_{
n
}^{
\dagger
}
\\
+
&
\sum
_{
mnkl
}
\left
(A
_{
mn
}^{
(1)
}
B
_{
kl
}^{
(2)
}
+ B
_{
mn
}^{
(1)
}
A
_{
kl
}^{
(2)
}
\right
)[c
_{
m
}^{
\dagger
}
c
_{
n
}^{
\dagger
}
,c
_{
k
}
c
_{
l
}
]
_{
-
}
&&
=
\sum
_{
mn
}
(+2)
\left
([A
^{
(1)
}
,B
^{
(2)
}
]
_{
-
}
+ [B
^{
(1)
}
,A
^{
(2)
}
]
_{
-
}
\right
)
_{
mn
}
c
_{
m
}^{
\dagger
}
c
_{
n
}
\end{align*}
If we compare with the expression
\begin{multline}
%\frac14
\left
[
\begin{pmatrix}
A
^{
(0)
}
&
A
^{
(1)
}
\\
A
^{
(2)
}
&
A
^{
(0)
\mathsf
{
T
}}
\end{pmatrix}
,
\begin{pmatrix}
B
^{
(0)
}
&
B
^{
(1)
}
\\
B
^{
(2)
}
&
B
^{
(0)
\mathsf
{
T
}}
\end{pmatrix}
\right
]
_{
-
}
=
\\
=
\begin{pmatrix}
[A
^{
(0)
}
,B
^{
(0)
}
]
_{
-
}
+ A
^{
(1)
}
B
^{
(2)
}
- B
^{
(1)
}
A
^{
(2)
}
&
A
^{
(0)
}
B
^{
(1)
}
+ A
^{
(1)
}
B
^{
(0)
\mathsf
{
T
}}
- B
^{
(0)
}
A
^{
(1)
}
- B
^{
(1)
}
A
^{
(0)
\mathsf
{
T
}}
\\
A
^{
(2)
}
B
^{
(0)
}
+ A
^{
(0)
\mathsf
{
T
}}
B
^{
(2)
}
- B
^{
(2)
}
A
^{
(0)
}
- B
^{
(0)
\mathsf
{
T
}}
A
^{
(2)
}
&
[A
^{
(0)
\mathsf
{
T
}}
,B
^{
(0)
\mathsf
{
T
}}
]
_{
-
}
+ A
^{
(2)
}
B
^{
(1)
}
- B
^{
(2)
}
A
^{
(1)
}
\end{pmatrix}
\end{multline}
we'll see that the commutator of operators is equivalent to the commutator of their Nambu matrices.
Note that if
$
A
^{
(
2
)
}
=-
A
^{
(
1
)*
}$
and
$
B
^{
(
2
)
}
=-
B
^{
(
1
)*
}$
then the same is true for their commutator.
\subsection
{
Charge on the line
}
\begin{equation}
\langle
e
^{
i
\lambda\mathcal
{
Q
}}
\rangle
=
\frac
{
\Tr
\left
[e^{i\lambda\mathcal{Q}} e^{-\beta \mathcal{H}}\right]
}{
\Tr
\left
[e^{-\beta \mathcal{H}}\right]
}
= e
^{
i
\lambda
L/2
}
\left
[ \frac{\det \left[1+e^{i\lambda Q} e^{-\beta H}\right]
}{
\det
\left
[1+ e^{-\beta H}\right]
}
\right
]
^{
1/2
}
\qquad
Q =
\begin{pmatrix}
\widetilde
{
Q
}
&
0
\\
0
&
-
\widetilde
{
Q
}
\end{pmatrix}
\end{equation}
\newpage
\appendix
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment