Skip to content
Snippets Groups Projects
mtprng.f90 12.14 KiB
module mtprng
!---------------------------------------------------------------------
! From the Algorithmic Conjurings of Scott Robert Ladd comes...
!---------------------------------------------------------------------
!
!  mtprng.f90 (a Fortran 95 module)
!
!  An implementation of the Mersenne Twister algorithm for generating
!  psuedo-random sequences.
!
!  History
!  -------
!   1.0.0   Initial release
!
!   1.1.0   6 February 2002
!           Updated to support algorithm revisions posted
!           by Matsumoto and Nishimura on 26 January 2002
!
!   1.5.0   12 December 2003
!           Added to hypatia project
!           Minor style changes
!           Tightened code
!           Now state based; no static variables
!           Removed mtprng_rand_real53
!
!   2.0.0   4 January 2004
!           Corrected erroneous unsigned bit manipulations
!           Doubled resolution by using 64-bit math
!           Added mtprng_rand64
!
!  ORIGINAL ALGORITHM COPYRIGHT
!  ============================
!  Copyright (C) 1997,2002 Makoto Matsumoto and Takuji Nishimura.
!  Any feedback is very welcome. For any question, comments, see
!  http://www.math.keio.ac.jp/matumoto/emt.html or email
!  matumoto@math.keio.ac.jp
!---------------------------------------------------------------------
!
!  COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:
!
!  This notice applies *only* to this specific expression of this
!  algorithm, and does not imply ownership or invention of the
!  implemented algorithm.
!  
!  If you modify this file, you may insert additional notices
!  immediately following this sentence.
!  
!  Copyright 2001, 2002, 2004 Scott Robert Ladd.
!  All rights reserved, except as noted herein.
!
!  This computer program source file is supplied "AS IS". Scott Robert
!  Ladd (hereinafter referred to as "Author") disclaims all warranties,
!  expressed or implied, including, without limitation, the warranties
!  of merchantability and of fitness for any purpose. The Author
!  assumes no liability for direct, indirect, incidental, special,
!  exemplary, or consequential damages, which may result from the use
!  of this software, even if advised of the possibility of such damage.
!  
!  The Author hereby grants anyone permission to use, copy, modify, and
!  distribute this source code, or portions hereof, for any purpose,
!  without fee, subject to the following restrictions:
!  
!      1. The origin of this source code must not be misrepresented.
!  
!      2. Altered versions must be plainly marked as such and must not
!         be misrepresented as being the original source.
!  
!      3. This Copyright notice may not be removed or altered from any
!         source or altered source distribution.
!  
!  The Author specifically permits (without fee) and encourages the use
!  of this source code for entertainment, education, or decoration. If
!  you use this source code in a product, acknowledgment is not required
!  but would be appreciated.
!  
!  Acknowledgement:
!      This license is based on the wonderful simple license that
!      accompanies libpng.
!
!-----------------------------------------------------------------------
!
!  For more information on this software package, please visit
!  Scott's web site, Coyote Gulch Productions, at:
!
!      http://www.coyotegulch.com
!  
!-----------------------------------------------------------------------

    use stdtypes

    implicit none

    !------------------------------------------------------------------------------
    ! Everything is private unless explicitly made public
    private

    public :: mtprng_state, &
              mtprng_init, mtprng_init_by_array, &
              mtprng_rand64, mtprng_rand, mtprng_rand_range, &
              mtprng_rand_real1, mtprng_rand_real2, mtprng_rand_real3

    !------------------------------------------------------------------------------
    ! Constants
    integer(INT32), parameter :: N = 624_INT32
    integer(INT32), parameter :: M = 397_INT32

    !------------------------------------------------------------------------------
    ! types
    type mtprng_state
        integer(INT32)                   :: mti = -1
        integer(INT64), dimension(0:N-1) :: mt
    end type 

contains
    !--------------------------------------------------------------------------
    !  Initializes the generator with "seed"
    subroutine mtprng_init(seed, state)
    
        ! arguments
        integer(INT32),     intent(in)  :: seed
        type(mtprng_state), intent(out) :: state
        
        ! working storage
        integer :: i
        integer(INT64) :: s, b

        ! save seed        
        state%mt(0) = seed
        
        ! Set the seed using values suggested by Matsumoto & Nishimura, using
        !   a generator by Knuth. See original source for details.
        do i = 1, N - 1
            state%mt(i) = iand(4294967295_INT64,1812433253_INT64 * ieor(state%mt(i-1),ishft(state%mt(i-1),-30_INT64)) + i)
        end do
        
        state%mti = N

    end subroutine mtprng_init
    
    !--------------------------------------------------------------------------
    ! Initialize with an array of seeds
    subroutine mtprng_init_by_array(init_key, state)
    
        ! arguments
        integer(INT32), dimension(:), intent(in) :: init_key
        type(mtprng_state), intent(out) :: state
        
        ! working storage
        integer :: key_length
        integer :: i
        integer :: j
        integer :: k
        
        call mtprng_init(19650218_INT32,state)
        
        i = 1
        j = 0
        key_length = size(init_key)
        
        do k = max(N,key_length), 0, -1
            state%mt(i) = ieor(state%mt(i),(ieor(state%mt(i-1),ishft(state%mt(i-1),-30_INT64) * 1664525_INT64))) + init_key(j) + j
            
            i = i + 1
            j = j + 1
            
            if (i >= N) then
                state%mt(0) = state%mt(N-1)
                i = 1
            end if
            
            if (j >= key_length) j = 0
        end do
        
        do k = N-1, 0, -1
            state%mt(i) = ieor(state%mt(i),(ieor(state%mt(i-1),ishft(state%mt(i-1),-30_INT64) * 1566083941_INT64))) - i
            
            i = i + 1
            
            if (i>=N) then
                state%mt(0) = state%mt(N-1)
                i = 1
            end if
        end do

        state%mt(0) = 1073741824_INT64 ! 0x40000000, assuring non-zero initial array 
        
    end subroutine mtprng_init_by_array
    
    !--------------------------------------------------------------------------
    !   Obtain the next 32-bit integer in the psuedo-random sequence
    function mtprng_rand64(state) result(r)
    
        ! arguments
        type(mtprng_state), intent(inout) :: state
    
        !return type
        integer(INT64) :: r

        ! internal constants
        integer(INT64), dimension(0:1), parameter :: mag01 = (/ 0_INT64, -1727483681_INT64 /)

        ! Period parameters
        integer(INT64), parameter :: UPPER_MASK =  2147483648_INT64
        integer(INT64), parameter :: LOWER_MASK =  2147483647_INT64

        ! Tempering parameters
        integer(INT64), parameter :: TEMPERING_B = -1658038656_INT64
        integer(INT64), parameter :: TEMPERING_C =  -272236544_INT64
        
        ! Note: variable names match those in original example
        integer(INT32) :: kk
        
        ! Generate N words at a time
        if (state%mti >= N) then
            ! The value -1 acts as a flag saying that the seed has not been set.
            if (state%mti == -1) call mtprng_init(4357_INT32,state)
            
            ! Fill the mt array
            do kk = 0, N - M - 1
                r = ior(iand(state%mt(kk),UPPER_MASK),iand(state%mt(kk+1),LOWER_MASK))
                state%mt(kk) = ieor(ieor(state%mt(kk + M),ishft(r,-1_INT64)),mag01(iand(r,1_INT64)))
            end do
            
            do kk = N - M, N - 2
                r = ior(iand(state%mt(kk),UPPER_MASK),iand(state%mt(kk+1),LOWER_MASK))
                state%mt(kk) = ieor(ieor(state%mt(kk + (M - N)),ishft(r,-1_INT64)),mag01(iand(r,1_INT64)))
            end do
            
            r = ior(iand(state%mt(N-1),UPPER_MASK),iand(state%mt(0),LOWER_MASK))
            state%mt(N-1) = ieor(ieor(state%mt(M-1),ishft(r,-1)),mag01(iand(r,1_INT64)))
            
            ! Start using the array from first element
            state%mti = 0
        end if
        
        ! Here is where we actually calculate the number with a series of
        !   transformations 
        r = state%mt(state%mti)
        state%mti = state%mti + 1
        
        r = ieor(r,ishft(r,-11))
        r = iand(4294967295_INT64,ieor(r,iand(ishft(r, 7),TEMPERING_B)))
        r = iand(4294967295_INT64,ieor(r,iand(ishft(r,15),TEMPERING_C)))
        r = ieor(r,ishft(r,-18))
        
    end function mtprng_rand64
    
    !--------------------------------------------------------------------------
    !   Obtain the next 32-bit integer in the psuedo-random sequence
    function mtprng_rand(state) result(r)
    
        ! arguments
        type(mtprng_state), intent(inout) :: state
    
        !return type
        integer(INT32) :: r
        
        ! working storage
        integer(INT64) :: x
        
        ! done
        x = mtprng_rand64(state)
        
        if (x > 2147483647_INT64) then
            r = x - 4294967296_INT64
        else
            r = x
        end if
        
    end function mtprng_rand
    
    !---------------------------------------------------------------------------
    !   Obtain a psuedorandom integer in the range [lo,hi]
    function mtprng_rand_range(state, lo, hi) result(r)

        ! arguments
        type(mtprng_state), intent(inout) :: state
        integer, intent(in) :: lo
        integer, intent(in) :: hi
        
        ! return type
        integer(INT32) :: r
        
        ! Use real value to caluclate range
        r = lo + floor((hi - lo + 1.0_IEEE64) * mtprng_rand_real2(state))
        
    end function mtprng_rand_range

    !--------------------------------------------------------------------------
    !   Obtain a psuedorandom real number in the range [0,1], i.e., a number
    !   greater than or equal to 0 and less than or equal to 1.
    function mtprng_rand_real1(state) result(r)

        ! arguments
        type(mtprng_state), intent(inout) :: state
    
        ! return type
        real(IEEE64) :: r
        
        ! Local constant; precalculated to avoid division below
        real(IEEE64), parameter :: factor = 1.0_IEEE64 / 4294967295.0_IEEE64
        
        ! compute
        r = real(mtprng_rand64(state),IEEE64) * factor
        
    end function mtprng_rand_real1

    !--------------------------------------------------------------------------
    !   Obtain a psuedorandom real number in the range [0,1), i.e., a number
    !   greater than or equal to 0 and less than 1.
    function mtprng_rand_real2(state) result(r)

        ! arguments
        type(mtprng_state), intent(inout) :: state
    
        ! return type
        real(IEEE64) :: r
        
        ! Local constant; precalculated to avoid division below
        real(IEEE64), parameter :: factor = 1.0_IEEE64 / 4294967296.0_IEEE64
        
        ! compute
        r = real(mtprng_rand64(state),IEEE64) * factor
        
    end function mtprng_rand_real2

    !--------------------------------------------------------------------------
    !   Obtain a psuedorandom real number in the range (0,1), i.e., a number
    !   greater than 0 and less than 1.
    function mtprng_rand_real3(state) result(r)

        ! arguments
        type(mtprng_state), intent(inout) :: state
    
        ! return type
        real(IEEE64) :: r
        
        ! Local constant; precalculated to avoid division below
        real(IEEE64), parameter :: factor = 1.0_IEEE64 / 4294967296.0_IEEE64
        
        r = (real(mtprng_rand64(state),IEEE64) + 0.5_IEEE64) * factor
        
    end function mtprng_rand_real3

end module mtprng