-
Johannes Wasmer authoredJohannes Wasmer authored
kkr-jlcdm.tex 6.45 KiB
\section{Better initial guess}
\label{sec:kkr-jlcdm}
% Slide PhD project flowchart % Section phd-project
\begin{frame}
\frametitle{Vision: Electronic structure learning}
% frametitle notes: PhD project flowchart
\framesubtitle{as integrated, high-level multiscale workflows}
\vspace*{0em}
\includegraphics[width=1.0\textwidth]{../resources/fig/presentation-2023-02/atomistic-ml/classification-of-atomistic-ml_presentation-2023-02_02-emph-both_ktikz.pdf}
\vspace*{2em}
\begin{columns}[t]
\hspace{1em}
\begin{column}{0.6\linewidth}
\begin{center}
Better \enquote{initial guess}
for fast SCF convergence
\end{center}
\end{column}
\vrule{}
\hspace{1em}
\begin{column}{0.39\linewidth}
\begin{center}
Magnetic property prediction
(ML-Exc) for spin dynamics
\end{center}
\end{column}
\end{columns}
\end{frame}
% Slide AiiDA-KKR workflows % kkr-theory
\begin{frame}[plain,c]
\frametitle{Project \enquote{Better initial guess}}
\framesubtitle{\logoAiida{}-KKR workflows}
\vspace*{0em}
\begin{columns}[t]
\vspace*{-1em}
\begin{column}{0.3\linewidth}
% {\footnotesize Single impurity}
\begin{center}
\includegraphics[width=0.95\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}\footcite{russmannAiiDAKKRPluginIts2021}
\end{center}
\end{column}
\begin{column}{0.5\linewidth}
\vspace*{-2em}
\begin{center}
\includegraphics[width=0.75\textheight]{../resources/fig/aiida-kkr/graph//kkr_imp_wc.pdf}%
\end{center}
% \framezoom<1><2>(3.5cm,0.5cm)(4.5cm,3.25cm) % upper part, kkr_scf workflow
% \framezoom<1><3>(4.5cm,3.5cm)(4.5cm,5.25cm) % lower part, kkr_imp workflow
\end{column}
\end{columns}
\vspace*{-0em}
\end{frame}
% Slide dataset generation (single-impurity-database)
\begin{frame}[plain]
\frametitle{Project \enquote{Better initial guess}}
\framesubtitle{Data generation}
% frametitle notes: Vimp-prediction qnd
\begin{columns}[c]
\begin{column}{0.45\linewidth}
{\small
\textbf{Data} 10'000 impurity embeddings into elemental crystals\vspace{0.5em}
\textbf{Target} Electron potential difference \(\Delta
V_{imp}(\vec{r})\) \vspace{0.5em}
}
\includegraphics[width=1.0\linewidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_scale-factor_count_linscale_annot.pdf}%
\begin{center}
{\footnotesize \textcolor{fzjgray50}{Dataset map. Rows: Element of host crystal,
columns: impurity atom, color: num. calculations.}}
\end{center}
\end{column}
\begin{column}{0.55\linewidth}
\vspace*{-2em}
\begin{columns}
\begin{column}{0.25\linewidth}
\hspace*{2.0em}
% \begin{center}
\includegraphics[width=1.0\linewidth]{../resources/fig/theo/kkr-impurity-region.png}%
% \end{center}
\end{column}
\begin{column}{0.75\linewidth}
\hspace*{2.5em}
% \begin{center}
\includegraphics[width=0.75\textwidth]{../resources/fig/jukkr/kkr-scf/kkr-scf_with-description.pdf}
% \end{center}
\end{column}
\end{columns}
\hspace*{0.0em}
\includegraphics[width=1.0\linewidth]{../resources/fig/aiida-kkr-ml/da/potential_Hg_sf-1.0_logy-False_absval-False_zoom.png}
\hspace*{0.0em}
\includegraphics[width=1.0\linewidth]{../resources/fig/aiida-kkr-ml/da/potential_Hg_sf-1.0_logy-True.png}
% \hspace*{-0.0em}
\begin{center}
{\footnotesize \textcolor{fzjgray50}{Spherical impurity potentials in first Voronoi cell of \ce{Hg}:\ce{X}
embeddings,\\left upper to bottom right: \(V\), \(V\!-\!V^0\), \(|V|\), \(|V\!-\!V^0|\).}}
\end{center}
\end{column}
\end{columns}
\end{frame}
% Slide Jacobi-Legendre framework
\begin{frame}[plain,c]
\frametitle{The Jacobi-Legendre framework\footcite{dominaJacobiLegendreFrameworkMachine2024}}
\framesubtitle{for electronic structure representation}
\vspace*{0em}
\begin{columns}[c]
\begin{column}{0.68\linewidth}
\begin{center}
% \includegraphics[width=1.0\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig5.1-with-polynomials.png}%
\includegraphics[width=0.9\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/originals/fig4.1.pdf}%
\vspace*{0.0em}
\includegraphics[width=0.9\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig-5.1-first-row-only.png}%
\end{center}
\end{column}
\vrule{} % vertical separator line
\hspace*{1em}
\begin{column}{0.32\linewidth}
\vspace*{0em}
\includegraphics[width=0.75\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig6.2-300dpi-narrower-1.png}%
\end{column}
\end{columns}
\vspace*{0em}
\end{frame}
% \begin{frame}[plain]
% % \frametitle{Dataset analysis}
% % \framesubtitle{}
% \emph{Single-impurity database} \(\boldsymbol{\vert}\) Charge doping
% \vspace{-1em}
% \begin{center}
% \includegraphics[width=0.88\textwidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_charge-neutrality-imp_linscale.pdf}%
% \end{center}
% \end{frame}
\begin{frame}[plain]
\frametitle{Atom-based JLCDM}
\begin{itemize}
\item The full KKR potential is expanded in real-space Voronoi
(Wigner-Seitz) cells around each atom and convoluted with shape functions
\[
V(\vec{r}) = \sum_L V_L(r) Y_L(\vec{r}) \quad \text{with} \quad V_{L L'}(r) = \sum_{L''} C_{L L' L''} V_{L''}(r)
\]
% side notes. C_L1L2 = Clebsch-Gordan, C_L1L2L3 = Gaunt coefficients
\[
V^n(\vec{r}) = V(\vec{r} + \vec{R}^n) \Theta(\vec{r}) \quad \text{with} \quad \Theta(\vec{r}) = \sum_L \Theta_L^n(r) Y_L(\vec{r})
\]
\item Idea: Expand the Jacobi-Legendre grid description at each atom, instead of
each grid point.
\[
V(\vec{r}) = \sum_{i} \sum_{n} a_n \tilde{P}_{n}^{ig}
+\sum_{ij}\sum_{n_1,n2,L} a_{n_1,n_2,i} \bar{P}_{n_1}^{ig} \bar{P}_{n_2}^{ij} P_{L}^{ijg}
\]
\[
\text{Angular expansion}\quad \int P_L ( \hat{r}_{gi} \cdot \hat{r}_{gj} ) Y (
\hat{r}_{gi} ) \, \text{d} \hat{r} \longrightarrow \int P_L ( \hat{r}_{ij} \cdot \hat{r}_{ig} ) Y ( \hat{r}_{ig} ) \, \text{d} \hat{r}
\]
\end{itemize}
\end{frame}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "../presentation"
%%% mode: flyspell
%%% ispell-local-dictionary: "english"
%%% End: