Forked from
empyre / empyre
406 commits behind the upstream repository.
-
Jan Caron authored
holoimage: changed colorwheel (now without axes) magcreator: create_vortex now also allows a 3D-center (2D is extracted) magdata: new methods: get_mask() and scale_down() phasemap: changed plotting defaults (new kwargs) phasemapper: started on electrical contribution
Jan Caron authoredholoimage: changed colorwheel (now without axes) magcreator: create_vortex now also allows a 3D-center (2D is extracted) magdata: new methods: get_mask() and scale_down() phasemap: changed plotting defaults (new kwargs) phasemapper: started on electrical contribution
analytic.py 6.56 KiB
# -*- coding: utf-8 -*-
"""Create simple phasemaps from analytic solutions."""
# TODO: Currently just for projections along the z-axis!
import numpy as np
from numpy import pi
PHI_0 = -2067.83 # magnetic flux in T*nm²
def phase_mag_slab(dim, res, phi, center, width, b_0=1):
'''Get the analytic solution for a phase map of a slab of specified dimensions.
Arguments:
dim - the dimensions of the grid, shape(z, y, x)
res - the resolution of the grid (grid spacing) in nm
phi - the azimuthal angle, describing the direction of the magnetized object
center - the center of the slab in pixel coordinates, shape(z, y, x)
width - the width of the slab in pixel coordinates, shape(z, y, x)
b_0 - magnetic induction corresponding to a magnetization Mo in T (default: 1)
Returns:
the analytic solution for the phase map
'''
# Function for the phase:
def phiMag(x, y):
def F0(x, y):
a = np.log(x**2 + y**2 + 1E-30)
b = np.arctan(x / (y+1E-30))
return x*a - 2*x + 2*y*b
return coeff * Lz * (- np.cos(phi) * (F0(x-x0-Lx/2, y-y0-Ly/2)
- F0(x-x0+Lx/2, y-y0-Ly/2)
- F0(x-x0-Lx/2, y-y0+Ly/2)
+ F0(x-x0+Lx/2, y-y0+Ly/2))
+ np.sin(phi) * (F0(y-y0-Ly/2, x-x0-Lx/2)
- F0(y-y0+Ly/2, x-x0-Lx/2)
- F0(y-y0-Ly/2, x-x0+Lx/2)
+ F0(y-y0+Ly/2, x-x0+Lx/2)))
# Process input parameters:
z_dim, y_dim, x_dim = dim
y0 = res * (center[1] + 0.5) # y0, x0 define the center of a pixel,
x0 = res * (center[2] + 0.5) # hence: (cellindex + 0.5) * resolution
Lz, Ly, Lx = res * width[0], res * width[1], res * width[2]
coeff = b_0 / (4*PHI_0)
# Create grid:
x = np.linspace(res/2, x_dim*res-res/2, num=x_dim)
y = np.linspace(res/2, y_dim*res-res/2, num=y_dim)
xx, yy = np.meshgrid(x, y)
# Return phase:
return phiMag(xx, yy)
def phase_mag_disc(dim, res, phi, center, radius, height, b_0=1):
'''Get the analytic solution for a phase map of a disc of specified dimensions.
Arguments:
dim - the dimensions of the grid, shape(z, y, x)
res - the resolution of the grid (grid spacing) in nm
phi - the azimuthal angle, describing the direction of the magnetized object
center - the center of the disc in pixel coordinates, shape(z, y, x)
radius - the radius of the disc in pixel coordinates (scalar value)
height - the height of the disc in pixel coordinates (scalar value)
b_0 - magnetic induction corresponding to a magnetization Mo in T (default: 1)
Returns:
the analytic solution for the phase map
'''
# Function for the phase:
def phiMag(x, y):
r = np.hypot(x - x0, y - y0)
r[center[1], center[2]] = 1E-30
result = coeff * Lz * ((y - y0) * np.cos(phi) - (x - x0) * np.sin(phi))
result *= np.where(r <= R, 1, (R / r) ** 2)
return result
# Process input parameters:
z_dim, y_dim, x_dim = dim
y0 = res * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel,
x0 = res * (center[2] + 0.5) # hence: cellindex + 0.5
Lz = res * height
R = res * radius
coeff = - pi * b_0 / (2*PHI_0)
# Create grid:
x = np.linspace(res/2, x_dim*res-res/2, num=x_dim)
y = np.linspace(res/2, y_dim*res-res/2, num=y_dim)
xx, yy = np.meshgrid(x, y)
# Return phase:
return phiMag(xx, yy)
def phase_mag_sphere(dim, res, phi, center, radius, b_0=1):
'''Get the analytic solution for a phase map of a sphere of specified dimensions.
Arguments:
dim - the dimensions of the grid, shape(z, y, x)
res - the resolution of the grid (grid spacing) in nm
phi - the azimuthal angle, describing the direction of the magnetized object
center - the center of the sphere in pixel coordinates, shape(z, y, x)
radius - the radius of the sphere in pixel coordinates (scalar value)
b_0 - magnetic induction corresponding to a magnetization Mo in T (default: 1)
Returns:
the analytic solution for the phase map
'''
# Function for the phase:
def phiMag(x, y):
r = np.hypot(x - x0, y - y0)
r[center[1], center[2]] = 1E-30
result = coeff * R ** 3 / r ** 2 * ((y - y0) * np.cos(phi) - (x - x0) * np.sin(phi))
result *= np.where(r > R, 1, (1 - (1 - (r / R) ** 2) ** (3. / 2.)))
return result
# Process input parameters:
z_dim, y_dim, x_dim = dim
y0 = res * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel,
x0 = res * (center[2] + 0.5) # hence: cellindex + 0.5
R = res * radius
coeff = - 2./3. * pi * b_0 / PHI_0
# Create grid:
x = np.linspace(res / 2, x_dim * res - res / 2, num=x_dim)
y = np.linspace(res / 2, y_dim * res - res / 2, num=y_dim)
xx, yy = np.meshgrid(x, y)
# Return phase:
return phiMag(xx, yy)
def phase_mag_vortex(dim, res, center, radius, height, b_0=1):
'''Get the analytic solution for a phase map of a sharp vortex disc of specified dimensions.
Arguments:
dim - the dimensions of the grid, shape(z, y, x)
res - the resolution of the grid (grid spacing) in nm
center - the center of the disc in pixel coordinates, shape(z, y, x)
radius - the radius of the disc in pixel coordinates (scalar value)
height - the height of the disc in pixel coordinates (scalar value)
b_0 - magnetic induction corresponding to a magnetization Mo in T (default: 1)
Returns:
the analytic solution for the phase map
'''
# Function for the phase:
def phiMag(x, y):
r = np.hypot(x - x0, y - y0)
result = coeff * np.where(r <= R, r - R, 0)
return result
# Process input parameters:
z_dim, y_dim, x_dim = dim
y0 = res * (center[1] + 0.5) # y0, x0 have to be in the center of a pixel,
x0 = res * (center[2] + 0.5) # hence: cellindex + 0.5
Lz = res * height
R = res * radius
coeff = pi * b_0 * Lz / PHI_0
# Create grid:
x = np.linspace(res/2, x_dim*res-res/2, num=x_dim)
y = np.linspace(res/2, y_dim*res-res/2, num=y_dim)
xx, yy = np.meshgrid(x, y)
# Return phase:
return phiMag(xx, yy)