Forked from
empyre / empyre
443 commits behind the upstream repository.
-
Jan Caron authored
analytic: changed analytic solution for discs (still not perfect) magcreator: added logo function phasemap: revised the analytical formulas -> more uniform added new folder for PYRAMID project added testsuite module
Jan Caron authoredanalytic: changed analytic solution for discs (still not perfect) magcreator: added logo function phasemap: revised the analytical formulas -> more uniform added new folder for PYRAMID project added testsuite module
analytic.py 4.12 KiB
# -*- coding: utf-8 -*-
"""Create simple phasemaps from analytic solutions."""
import numpy as np
import matplotlib.pyplot as plt
from numpy import pi
PHI_0 = 2067.83 # magnetic flux in T*nm²
def plot_phase(phase, res, name):
fig = plt.figure()
ax = fig.add_subplot(111, aspect='equal')
plt.pcolormesh(phase, cmap='gray')
ticks = ax.get_xticks() * res
ax.set_xticklabels(ticks.astype(int))
ticks = ax.get_yticks() * res
ax.set_yticklabels(ticks.astype(int))
ax.set_title('Analytical Solution' + name)
ax.set_xlabel('x-axis [nm]')
ax.set_ylabel('y-axis [nm]')
plt.colorbar()
plt.show()
def phasemap_slab(dim, res, beta, center, width, b_0):
'''INPUT VARIABLES'''
y_dim, x_dim = dim
# y0, x0 have to be in the center of a pixel, hence: cellindex + 0.5
y0 = res * (center[0] + 0.5)
x0 = res * (center[1] + 0.5)
# Ly, Lx have to be odd, because the slab borders should not lie in the
# center of a pixel (so L/2 can't be an integer)
Ly = res * ( width[0] + (width[0]+1)%2)
Lx = res * ( width[1] + (width[1]+1)%2)
'''COMPUTATION MAGNETIC PHASE SHIFT (REAL SPACE) SLAB'''
coeff = b_0 * res / ( 4 * PHI_0 )
def F0(x,y):
a = np.log(x**2 + y**2)
b = np.arctan(x / y)
return x*a - 2*x + 2*y*b
def phiMag(x,y):
return coeff * ( - np.cos(beta) * ( F0(x-x0-Lx/2, y-y0-Ly/2)
-F0(x-x0+Lx/2, y-y0-Ly/2)
-F0(x-x0-Lx/2, y-y0+Ly/2)
+F0(x-x0+Lx/2, y-y0+Ly/2) )
+ np.sin(beta) * ( F0(y-y0-Ly/2, x-x0-Lx/2)
-F0(y-y0+Ly/2, x-x0-Lx/2)
-F0(y-y0-Ly/2, x-x0+Lx/2)
+F0(y-y0+Ly/2, x-x0+Lx/2) ) )
'''CREATE COORDINATE GRIDS'''
x = np.linspace(res/2,x_dim*res-res/2,num=x_dim)
y = np.linspace(res/2,y_dim*res-res/2,num=y_dim)
xx, yy = np.meshgrid(x,y)
return phiMag(xx, yy)
def phasemap_disc(dim, res, beta, center, radius, b_0):
'''INPUT VARIABLES'''
y_dim, x_dim = dim
# y0, x0 have to be in the center of a pixel, hence: cellindex + 0.5
y0 = res * (center[0] + 0.5)
x0 = res * (center[1] + 0.5)
# TODO: Explanation
# Ly, Lx have to be odd, because the slab borders should not lie in the
# center of a pixel (so L/2 can't be an integer)
R = res * radius
'''COMPUTATION MAGNETIC PHASE SHIFT (REAL SPACE) DISC'''
coeff = - pi * res * b_0 / ( 2 * PHI_0 )
# import pdb; pdb.set_trace()
def phiMag(x,y):
r = np.hypot(x-x0, y-y0)
r[center[0], center[1]] = 1E-18
result = coeff * ((y-y0) * np.cos(beta) - (x-x0) * np.sin(beta))
in_or_out = 1 * (r < R) + (R / r) ** 2 * (r > R)
# import pdb; pdb.set_trace()
result *= in_or_out
return result
'''CREATE COORDINATE GRIDS'''
x = np.linspace(res/2,x_dim*res-res/2,num=x_dim)
y = np.linspace(res/2,y_dim*res-res/2,num=y_dim)
xx, yy = np.meshgrid(x,y)
return phiMag(xx, yy)
def phasemap_sphere(dim, res, beta, center, radius, b_0):
# TODO: Sphere is equivalent to disc, if only one pixel in z is used!
'''INPUT VARIABLES'''
y_dim, x_dim = dim
y0, x0 = center
R = radius
'''COMPUTATION MAGNETIC PHASE SHIFT (REAL SPACE) SPHERE'''
coeff = - 2/3 * pi * R**3 * b_0 / PHI_0 * res/R
def phiMag(x,y):
r = np.sqrt((x-x0) ** 2 + (y-y0) ** 2)
result = coeff / r**2 * ((y-y0) * np.cos(beta) - (x-x0) * np.sin(beta))
in_or_out = 1 * (r > R) + (1 - (1-(r/R)**2)**(3/2)) * (r < R)
result *= in_or_out
return result
'''CREATE COORDINATE GRIDS'''
x = np.linspace(res/2,x_dim*res-res/2,num=x_dim)
y = np.linspace(res/2,y_dim*res-res/2,num=y_dim)
xx, yy = np.meshgrid(x,y)
return phiMag(xx, yy)