Skip to content
Snippets Groups Projects
Commit 160612de authored by Jörn Ungermann's avatar Jörn Ungermann
Browse files

update of documentation and tidying of split bregman.

parent 75f98c03
No related branches found
No related tags found
No related merge requests found
...@@ -50,7 +50,7 @@ class PrintIterator(object): ...@@ -50,7 +50,7 @@ class PrintIterator(object):
''' '''
LOG = logging.getLogger(__name__+'.PrintIterator') LOG = logging.getLogger(__name__ + '.PrintIterator')
def __init__(self, cost, verbosity): def __init__(self, cost, verbosity):
self.LOG.debug('Calling __init__') self.LOG.debug('Calling __init__')
...@@ -58,7 +58,7 @@ class PrintIterator(object): ...@@ -58,7 +58,7 @@ class PrintIterator(object):
self.verbosity = verbosity self.verbosity = verbosity
assert verbosity in {0, 1, 2}, 'verbosity has to be set to 0, 1 or 2!' assert verbosity in {0, 1, 2}, 'verbosity has to be set to 0, 1 or 2!'
self.iteration = 0 self.iteration = 0
self.LOG.debug('Created '+str(self)) self.LOG.debug('Created ' + str(self))
def __call__(self, xk): def __call__(self, xk):
self.LOG.debug('Calling __call__') self.LOG.debug('Calling __call__')
...@@ -86,6 +86,7 @@ class PrintIterator(object): ...@@ -86,6 +86,7 @@ class PrintIterator(object):
def optimize_linear(data, regularisator=None, max_iter=None): def optimize_linear(data, regularisator=None, max_iter=None):
'''Reconstruct a three-dimensional magnetic distribution from given phase maps via the '''Reconstruct a three-dimensional magnetic distribution from given phase maps via the
conjugate gradient optimizaion method :func:`~.scipy.sparse.linalg.cg`. conjugate gradient optimizaion method :func:`~.scipy.sparse.linalg.cg`.
Blazingly fast for l2-based cost functions.
Parameters Parameters
---------- ----------
...@@ -104,21 +105,22 @@ def optimize_linear(data, regularisator=None, max_iter=None): ...@@ -104,21 +105,22 @@ def optimize_linear(data, regularisator=None, max_iter=None):
''' '''
import jutil.cg as jcg import jutil.cg as jcg
LOG.debug('Calling optimize_sparse_cg') LOG.debug('Calling optimize_linear')
# Set up necessary objects: # Set up necessary objects:
cost = Costfunction(data, regularisator) cost = Costfunction(data, regularisator)
LOG.info('Cost before optimization: {}'.format(cost(np.zeros(cost.n)))) LOG.info('Cost before optimization: {}'.format(cost(np.zeros(cost.n))))
x_opt = jcg.conj_grad_minimize(cost, max_iter=max_iter) x_opt = jcg.conj_grad_minimize(cost, max_iter=max_iter)
LOG.info('Cost after optimization: {}'.format(cost(x_opt))) LOG.info('Cost after optimization: {}'.format(cost(x_opt)))
# Create and return fitting MagData object: # Create and return fitting MagData object:
mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) mag_opt = MagData(data.a, np.zeros((3,) + data.dim))
mag_opt.set_vector(x_opt, data.mask) mag_opt.set_vector(x_opt, data.mask)
return mag_opt return mag_opt
def optimize_nonlin(data, first_guess=None, regularisator=None): def optimize_nonlin(data, first_guess=None, regularisator=None):
'''Reconstruct a three-dimensional magnetic distribution from given phase maps via the '''Reconstruct a three-dimensional magnetic distribution from given phase maps via
conjugate gradient optimizaion method :func:`~.scipy.sparse.linalg.cg`. steepest descent method. This is slow, but works best for non l2-regularisators.
Parameters Parameters
---------- ----------
...@@ -129,8 +131,7 @@ def optimize_nonlin(data, first_guess=None, regularisator=None): ...@@ -129,8 +131,7 @@ def optimize_nonlin(data, first_guess=None, regularisator=None):
first_fuess : :class:`~pyramid.magdata.MagData` first_fuess : :class:`~pyramid.magdata.MagData`
magnetization to start the non-linear iteration with. magnetization to start the non-linear iteration with.
regularisator : :class:`~.Regularisator`, optional regularisator : :class:`~.Regularisator`, optional
Regularisator class that's responsible for the regularisation term. Defaults to zero Regularisator class that's responsible for the regularisation term.
order Tikhonov if none is provided.
Returns Returns
------- -------
...@@ -140,9 +141,9 @@ def optimize_nonlin(data, first_guess=None, regularisator=None): ...@@ -140,9 +141,9 @@ def optimize_nonlin(data, first_guess=None, regularisator=None):
''' '''
import jutil.minimizer as jmin import jutil.minimizer as jmin
import jutil.norms as jnorms import jutil.norms as jnorms
LOG.debug('Calling optimize_cg') LOG.debug('Calling optimize_nonlin')
if first_guess is None: if first_guess is None:
first_guess = MagData(data.a, np.zeros((3,)+data.dim)) first_guess = MagData(data.a, np.zeros((3,) + data.dim))
x_0 = first_guess.get_vector(data.mask) x_0 = first_guess.get_vector(data.mask)
cost = Costfunction(data, regularisator) cost = Costfunction(data, regularisator)
...@@ -152,12 +153,13 @@ def optimize_nonlin(data, first_guess=None, regularisator=None): ...@@ -152,12 +153,13 @@ def optimize_nonlin(data, first_guess=None, regularisator=None):
q = 1. / (1. - (1. / p)) q = 1. / (1. - (1. / p))
lp = regularisator.norm lp = regularisator.norm
lq = jnorms.LPPow(q, 1e-20) lq = jnorms.LPPow(q, 1e-20)
def preconditioner(_, direc): def preconditioner(_, direc):
direc_p = direc / abs(direc).max() direc_p = direc / abs(direc).max()
direc_p = 10 * (1. / q) * lq.jac(direc_p) direc_p = 10 * (1. / q) * lq.jac(direc_p)
return direc_p return direc_p
# This Method is semi-best for L1 type problems. Takes forever, though # This Method is semi-best for Lp type problems. Takes forever, though
LOG.info('Cost before optimization: {}'.format(cost(np.zeros(cost.n)))) LOG.info('Cost before optimization: {}'.format(cost(np.zeros(cost.n))))
result = jmin.minimize( result = jmin.minimize(
cost, x_0, cost, x_0,
...@@ -166,14 +168,18 @@ def optimize_nonlin(data, first_guess=None, regularisator=None): ...@@ -166,14 +168,18 @@ def optimize_nonlin(data, first_guess=None, regularisator=None):
tol={"max_iteration": 10000}) tol={"max_iteration": 10000})
x_opt = result.x x_opt = result.x
LOG.info('Cost after optimization: {}'.format(cost(x_opt))) LOG.info('Cost after optimization: {}'.format(cost(x_opt)))
mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) mag_opt = MagData(data.a, np.zeros((3,) + data.dim))
mag_opt.set_vector(x_opt, data.mask) mag_opt.set_vector(x_opt, data.mask)
return mag_opt return mag_opt
def optimize_splitbregman(data, weight, lam, mu): def optimize_splitbregman(data, weight, lam, mu):
'''Reconstruct a three-dimensional magnetic distribution from given phase maps via the '''
conjugate gradient optimizaion method :func:`~.scipy.sparse.linalg.cg`. Reconstructs magnet distribution from phase image measurements using a split bregman
algorithm with a dedicated TV-l1 norm. Very dedicated, frickle, brittle, and difficult
to get to work, but fastest option available if it works.
Seems to work for some 2D examples with weight=lam=1 and mu in [1, .., 1e4].
Parameters Parameters
---------- ----------
...@@ -181,11 +187,12 @@ def optimize_splitbregman(data, weight, lam, mu): ...@@ -181,11 +187,12 @@ def optimize_splitbregman(data, weight, lam, mu):
:class:`~.DataSet` object containing all phase maps in :class:`~.PhaseMap` objects and all :class:`~.DataSet` object containing all phase maps in :class:`~.PhaseMap` objects and all
projection directions in :class:`~.Projector` objects. These provide the essential projection directions in :class:`~.Projector` objects. These provide the essential
information for the reconstruction. information for the reconstruction.
first_fuess : :class:`~pyramid.magdata.MagData` weight : float
magnetization to start the non-linear iteration with. Obscure split bregman parameter
regularisator : :class:`~.Regularisator`, optional lam : float
Regularisator class that's responsible for the regularisation term. Defaults to zero Cryptic split bregman parameter
order Tikhonov if none is provided. mu : float
flabberghasting split bregman paramter
Returns Returns
------- -------
...@@ -198,30 +205,33 @@ def optimize_splitbregman(data, weight, lam, mu): ...@@ -198,30 +205,33 @@ def optimize_splitbregman(data, weight, lam, mu):
import jutil.diff as jdiff import jutil.diff as jdiff
from pyramid.regularisator import FirstOrderRegularisator from pyramid.regularisator import FirstOrderRegularisator
LOG.debug('Calling optimize_splitbregman') LOG.debug('Calling optimize_splitbregman')
regularisator = FirstOrderRegularisator(data.mask, lam, 1)
x_0 = MagData(data.a, np.zeros((3,)+data.dim)).get_vector(data.mask)
cost = Costfunction(data, regularisator)
print cost(x_0)
# regularisator is actually not necessary, but this makes the cost
# function to that which is supposedly optimized by split bregman.
# Thus cost can be used to verify convergence
regularisator = FirstOrderRegularisator(data.mask, lam / mu, 1)
x_0 = MagData(data.a, np.zeros((3,) + data.dim)).get_vector(data.mask)
cost = Costfunction(data, regularisator)
fwd_mod = cost.fwd_model fwd_mod = cost.fwd_model
A = joperator.Function( A = joperator.Function(
(cost.m, cost.n), (cost.m, cost.n),
lambda x: fwd_mod.jac_dot(None, x), lambda x: fwd_mod.jac_dot(None, x),
FT=lambda x: fwd_mod.jac_T_dot(None, x)) FT=lambda x: fwd_mod.jac_T_dot(None, x))
D0 = jdiff.get_diff_operator(data.mask, 0, 3) D = joperator.VStack([
D1 = jdiff.get_diff_operator(data.mask, 1, 3) jdiff.get_diff_operator(data.mask, 0, 3),
D = joperator.VStack([D0, D1]) jdiff.get_diff_operator(data.mask, 1, 3)])
y = np.asarray(cost.y, dtype=np.double) y = np.asarray(cost.y, dtype=np.double)
x_opt = jsb.split_bregman_2d( x_opt = jsb.split_bregman_2d(
A, D, y, A, D, y,
weight=1000, mu=10, lambd=1e-6, max_iter=100) weight=weight, mu=mu, lambd=lam, max_iter=1000)
print cost(x_opt)
mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) mag_opt = MagData(data.a, np.zeros((3,) + data.dim))
mag_opt.set_vector(x_opt, data.mask) mag_opt.set_vector(x_opt, data.mask)
return mag_opt return mag_opt
def optimize_simple_leastsq(phase_map, mask, b_0=1, lam=1E-4, order=0): def optimize_simple_leastsq(phase_map, mask, b_0=1, lam=1E-4, order=0):
'''Reconstruct a magnetic distribution for a 2-D problem with known pixel locations. '''Reconstruct a magnetic distribution for a 2-D problem with known pixel locations.
...@@ -259,7 +269,7 @@ def optimize_simple_leastsq(phase_map, mask, b_0=1, lam=1E-4, order=0): ...@@ -259,7 +269,7 @@ def optimize_simple_leastsq(phase_map, mask, b_0=1, lam=1E-4, order=0):
dim = mask.shape # Dimensions of the mag. distr. dim = mask.shape # Dimensions of the mag. distr.
count = mask.sum() # Number of pixels with magnetization count = mask.sum() # Number of pixels with magnetization
# Create empty MagData object for the reconstruction: # Create empty MagData object for the reconstruction:
mag_data_rec = MagData(a, np.zeros((3,)+dim)) mag_data_rec = MagData(a, np.zeros((3,) + dim))
# Function that returns the phase map for a magnetic configuration x: # Function that returns the phase map for a magnetic configuration x:
def F(x): def F(x):
...@@ -294,6 +304,6 @@ def optimize_simple_leastsq(phase_map, mask, b_0=1, lam=1E-4, order=0): ...@@ -294,6 +304,6 @@ def optimize_simple_leastsq(phase_map, mask, b_0=1, lam=1E-4, order=0):
# Reconstruct the magnetization components: # Reconstruct the magnetization components:
# TODO Use jutil.minimizer.minimize(jutil.costfunction.LeastSquaresCostFunction(J_DICT[order], # TODO Use jutil.minimizer.minimize(jutil.costfunction.LeastSquaresCostFunction(J_DICT[order],
# ...) or a simpler frontend. # ...) or a simpler frontend.
x_rec, _ = leastsq(J_DICT[order], np.zeros(3*count)) x_rec, _ = leastsq(J_DICT[order], np.zeros(3 * count))
mag_data_rec.set_vector(x_rec, mask) mag_data_rec.set_vector(x_rec, mask)
return mag_data_rec return mag_data_rec
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment