Skip to content
Snippets Groups Projects
Commit 2fa049b7 authored by Jan Caron's avatar Jan Caron
Browse files

Deprecated numcore module! (No longer needed!)

parent 9466f15d
No related branches found
No related tags found
No related merge requests found
# -*- coding: utf-8 -*-
"""Package for numerical core routines which enable fast computations.
Modules
-------
phasemapper_core
Provides numerical core routines for :class:`~.PhaseMapper` class.
kernel_core
Provides numerical core routines for the :class:`~.Kernel` class.
Notes
-----
Packages are written in `pyx`-format for the use with :mod:`~.cython`.
"""
# -*- coding: utf-8 -*-
"""Numerical core routines for the :mod:`~.pyramid.phasemapper` module.
Provides helper functions to speed up phase mapping calculations in the
:mod:`~pyramid.phasemapper` module, by using C-speed for the for-loops and by omitting boundary
and wraparound checks.
"""
import numpy as np
import math
cimport cython
cimport numpy as np
@cython.boundscheck(False)
@cython.wraparound(False)
def phasemapper_real_convolve(
unsigned int v_dim, unsigned int u_dim,
float[:, :] v_phi, float[:, :] u_phi,
float[:, :] v_mag, float[:, :] u_mag,
float[:, :] phase, float threshold):
'''Numerical core routine for the phase calculation using the real space approach.
Parameters
----------
v_dim, u_dim : int
Dimensions of the projection along the two major axes.
v_phi, u_phi : :class:`~numpy.ndarray` (N=2)
Lookup tables for the pixel fields oriented in `u`- and `v`-direction.
v_mag, u_mag : :class:`~numpy.ndarray` (N=2)
Magnetization components in `u`- and `v`-direction.
phase : :class:`~numpy.ndarray` (N=2)
Matrix in which the resulting magnetic phase map should be stored.
threshold : float
The `threshold` determines which pixels contribute to the magnetic phase.
Returns
-------
None
'''
cdef unsigned int i, j, p, q, p_c, q_c
cdef float u_m, v_m
for j in range(v_dim):
for i in range(u_dim):
u_m = u_mag[j, i]
v_m = v_mag[j, i]
p_c = u_dim - 1 - i
q_c = v_dim - 1 - j
if abs(u_m) > threshold:
for q in range(v_dim):
for p in range(u_dim):
phase[q, p] += u_m * u_phi[q_c + q, p_c + p]
if abs(v_m) > threshold:
for q in range(v_dim):
for p in range(u_dim):
phase[q, p] -= v_m * v_phi[q_c + q, p_c + p]
@cython.boundscheck(False)
@cython.wraparound(False)
def jac_dot_real_convolve(
unsigned int v_dim, unsigned int u_dim,
float[:, :] u_phi, float[:, :] v_phi,
float[:] vector,
float[:] result):
'''Numerical core routine for the Jacobi matrix multiplication for the phase mapper.
Parameters
----------
v_dim, u_dim : int
Dimensions of the projection along the two major axes.
v_phi, u_phi : :class:`~numpy.ndarray` (N=2)
Lookup tables for the pixel fields oriented in `u`- and `v`-direction.
vector : :class:`~numpy.ndarray` (N=1)
Input vector which should be multiplied by the Jacobi-matrix.
result : :class:`~numpy.ndarray` (N=1)
Vector in which the result of the multiplication should be stored.
Returns
-------
None
Notes
-----
The strategy involves iterating over the magnetization first and over the kernel in an inner
iteration loop.
'''
cdef unsigned int s, i, j, u_min, u_max, v_min, v_max, r, u, v, size
size = u_dim * v_dim # Number of pixels
s = 0 # Current contributing pixel (numbered consecutively)
# Iterate over all contributingh pixels:
for j in range(v_dim):
for i in range(u_dim):
u_min = (u_dim-1) - i # u_max = u_min + u_dim
v_min = (v_dim-1) - j # v_max = v_min + v_dim
r = 0 # Current result component / affected pixel (numbered consecutively)
# Go over the current kernel cutout [v_min:v_max, u_min:u_max]:
for v in range(v_min, v_min + v_dim):
for u in range(u_min, u_min + u_dim):
result[r] += vector[s] * u_phi[v, u]
result[r] -= vector[s+size] * v_phi[v, u]
r += 1
s += 1
@cython.boundscheck(False)
@cython.wraparound(False)
def jac_T_dot_real_convolve(
unsigned int v_dim, unsigned int u_dim,
float[:, :] u_phi, float[:, :] v_phi,
float[:] vector,
float[:] result):
'''Core routine for the transposed Jacobi multiplication for the phase mapper.
Parameters
----------
v_dim, u_dim : int
Dimensions of the projection along the two major axes.
v_phi, u_phi : :class:`~numpy.ndarray` (N=2)
Lookup tables for the pixel fields oriented in `u`- and `v`-direction.
vector : :class:`~numpy.ndarray` (N=1)
Input vector which should be multiplied by the transposed Jacobi-matrix.
result : :class:`~numpy.ndarray` (N=1)
Vector in which the result of the multiplication should be stored.
Returns
-------
None
Notes
-----
The strategy involves iterating over the magnetization first and over the kernel in an inner
iteration loop.
'''
cdef unsigned int s, i, j, u_min, u_max, v_min, v_max, r, u, v, size
size = u_dim * v_dim # Number of pixels
r = 0 # Current result component / contributing pixel (numbered consecutively)
# Iterate over all contributingh pixels:
for j in range(v_dim):
for i in range(u_dim):
u_min = (u_dim-1) - i # u_max = u_min + u_dim
v_min = (v_dim-1) - j # v_max = v_min + v_dim
s = 0 # Current affected pixel (numbered consecutively)
# Go over the current kernel cutout [v_min:v_max, u_min:u_max]:
for v in range(v_min, v_min + v_dim):
for u in range(u_min, u_min + u_dim):
result[r] += vector[s] * u_phi[v, u]
result[r+size] -= vector[s] * v_phi[v, u]
s += 1
r += 1
......@@ -11,7 +11,6 @@ import abc
import logging
import numpy as np
import pyramid.numcore.phasemapper_core as nc
from numpy import pi
from pyramid import fft
......@@ -20,7 +19,7 @@ from pyramid.fielddata import VectorData, ScalarData
from pyramid.phasemap import PhaseMap
from pyramid.projector import RotTiltProjector, XTiltProjector, YTiltProjector, SimpleProjector
__all__ = ['PhaseMapperRDFC', 'PhaseMapperRDRC', 'PhaseMapperFDFC', 'PhaseMapperMIP', 'pm']
__all__ = ['PhaseMapperRDFC', 'PhaseMapperFDFC', 'PhaseMapperMIP', 'pm']
_log = logging.getLogger(__name__)
PHI_0 = 2067.83 # magnetic flux in T*nm²
......@@ -193,159 +192,6 @@ class PhaseMapperRDFC(PhaseMapper):
return result
class PhaseMapperRDRC(PhaseMapper):
"""Class representing a phase mapping strategy using real space discretization.
The :class:`~.PMReal` class represents a phase mapping strategy involving discretization in
real space. It directly takes :class:`~.VectorData` objects and returns :class:`~.PhaseMap`
objects.
Attributes
----------
kernel : :class:`~pyramid.Kernel`
Convolution kernel, representing the phase contribution of one single magnetized pixel.
threshold : float, optional
Threshold determining for which voxels the phase contribution will be calculated. The
default is 0, which means that all voxels with non-zero magnetization will contribute.
Should be above noise level.
numcore : boolean, optional
Boolean choosing if Cython enhanced routines from the :mod:`~.pyramid.numcore` module
should be used. Default is True.
m: int
Size of the image space.
n: int
Size of the input space.
"""
_log = logging.getLogger(__name__ + '.PhaseMapperRDRC')
def __init__(self, kernel, threshold=0, numcore=True):
self._log.debug('Calling __init__')
self.kernel = kernel
self.threshold = threshold
self.numcore = numcore
self.m = np.prod(kernel.dim_uv)
self.n = 2 * self.m
self._log.debug('Created ' + str(self))
def __repr__(self):
self._log.debug('Calling __repr__')
return '%s(kernel=%r, threshold=%r, numcore=%r)' % \
(self.__class__, self.kernel, self.threshold, self.numcore)
def __str__(self):
self._log.debug('Calling __str__')
return 'PhaseMapperRDRC(kernel=%s, threshold=%s, numcore=%s)' % \
(self.kernel, self.threshold, self.numcore)
def __call__(self, mag_data):
self._log.debug('Calling __call__')
dim_uv = self.kernel.dim_uv
assert isinstance(mag_data, VectorData), 'Only VectorData objects can be mapped!'
assert mag_data.a == self.kernel.a, 'Grid spacing has to match!'
assert mag_data.dim[0] == 1, 'Magnetic distribution must be 2-dimensional!'
assert mag_data.dim[1:3] == dim_uv, 'Dimensions do not match!'
# Process input parameters:
u_mag, v_mag = mag_data.field[0:2, 0, ...]
# Get kernel (lookup-tables for the phase of one pixel):
u_phi = self.kernel.u
v_phi = self.kernel.v
# Calculation of the phase:
phase = np.zeros(dim_uv, dtype=np.float32)
if self.numcore:
nc.phasemapper_real_convolve(dim_uv[0], dim_uv[1], u_phi, v_phi,
v_mag, u_mag, phase, self.threshold)
else:
for j in range(dim_uv[0]):
for i in range(dim_uv[1]):
v_phase = v_phi[dim_uv[0] - 1 - j:(2 * dim_uv[0] - 1) - j,
dim_uv[1] - 1 - i:(2 * dim_uv[1] - 1) - i]
if abs(v_mag[j, i]) > self.threshold:
phase += u_mag[j, i] * v_phase
u_phase = u_phi[dim_uv[0] - 1 - j:(2 * dim_uv[0] - 1) - j,
dim_uv[1] - 1 - i:(2 * dim_uv[1] - 1) - i]
if abs(u_mag[j, i]) > self.threshold:
phase -= v_mag[j, i] * u_phase
# Return the phase:
return PhaseMap(mag_data.a, phase)
def jac_dot(self, vector):
"""Calculate the product of the Jacobi matrix with a given `vector`.
Parameters
----------
vector : :class:`~numpy.ndarray` (N=1)
Vectorized form of the magnetization in `u`- and `v`-direction of every pixel
(row-wise). The first ``N**2`` elements have to correspond to the `u`-, the next
``N**2`` elements to the `v`-component of the magnetization.
Returns
-------
result : :class:`~numpy.ndarray` (N=1)
Product of the Jacobi matrix (which is not explicitely calculated) with the vector.
"""
assert len(vector) == self.n, \
'vector size not compatible! vector: {}, size: {}'.format(len(vector), self.n)
v_dim, u_dim = self.kernel.dim_uv
result = np.zeros(self.m, dtype=np.float32)
if self.numcore:
if vector.dtype != np.float32:
vector = vector.astype(np.float32)
nc.jac_dot_real_convolve(v_dim, u_dim, self.kernel.v, self.kernel.u, vector, result)
else:
# Iterate over all contributing pixels (numbered consecutively)
for s in range(self.m): # column-wise (two columns at a time, u- and v-component)
i = s % u_dim # u-coordinate of current contributing pixel
j = int(s / u_dim) # v-coordinate of current ccontributing pixel
u_min = (u_dim - 1) - i # u_dim-1: center of the kernel
u_max = (2 * u_dim - 1) - i # = u_min + u_dim
v_min = (v_dim - 1) - j # v_dim-1: center of the kernel
v_max = (2 * v_dim - 1) - j # = v_min + v_dim
result += vector[s] * self.kernel.v[v_min:v_max, u_min:u_max].reshape(-1)
result -= vector[s + self.m] * self.kernel.u[v_min:v_max, u_min:u_max].reshape(-1)
return result
def jac_T_dot(self, vector):
"""Calculate the product of the transposed Jacobi matrix with a given `vector`.
Parameters
----------
vector : :class:`~numpy.ndarray` (N=1)
Vector with ``N**2`` entries which represents a matrix with dimensions like a scalar
phasemap.
Returns
-------
result : :class:`~numpy.ndarray` (N=1)
Product of the transposed Jacobi matrix (which is not explicitely calculated) with
the vector, which has ``2*N**2`` entries like a 2D magnetic projection.
"""
assert len(vector) == self.m, \
'vector size not compatible! vector: {}, size: {}'.format(len(vector), self.m)
v_dim, u_dim = self.kernel.dim_uv
result = np.zeros(self.n, dtype=np.float32)
if self.numcore:
if vector.dtype != np.float32:
vector = vector.astype(np.float32)
nc.jac_T_dot_real_convolve(v_dim, u_dim, self.kernel.v, self.kernel.u, vector, result)
else:
# Iterate over all contributing pixels (numbered consecutively):
for s in range(self.m): # row-wise (two rows at a time, u- and v-component)
i = s % u_dim # u-coordinate of current contributing pixel
j = int(s / u_dim) # v-coordinate of current contributing pixel
u_min = (u_dim - 1) - i # u_dim-1: center of the kernel
u_max = (2 * u_dim - 1) - i # = u_min + u_dim
v_min = (v_dim - 1) - j # v_dim-1: center of the kernel
v_max = (2 * v_dim - 1) - j # = v_min + v_dim
result[s] = np.sum(vector * self.kernel.v[v_min:v_max, u_min:u_max].reshape(-1))
result[s + self.m] = np.sum(vector *
-self.kernel.u[v_min:v_max, u_min:u_max].reshape(-1))
return result
class PhaseMapperFDFC(PhaseMapper):
"""Class representing a phase mapping strategy using a discretization in Fourier space.
......
......@@ -10,8 +10,7 @@ from numpy.testing import assert_allclose
from pyramid.kernel import Kernel
from pyramid.fielddata import VectorData, ScalarData
from pyramid.phasemap import PhaseMap
from pyramid.phasemapper import PhaseMapperRDFC, PhaseMapperRDRC, PhaseMapperFDFC
from pyramid.phasemapper import PhaseMapperMIP, pm
from pyramid.phasemapper import PhaseMapperRDFC, PhaseMapperFDFC, PhaseMapperMIP, pm
class TestCasePhaseMapperRDFC(unittest.TestCase):
......@@ -52,44 +51,6 @@ class TestCasePhaseMapperRDFC(unittest.TestCase):
err_msg='Unexpected behaviour in the the transposed jacobi matrix!')
class TestCasePhaseMapperRDRC(unittest.TestCase):
def setUp(self):
self.path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'test_phasemapper')
self.mag_proj = VectorData.load_from_hdf5(os.path.join(self.path, 'mag_proj.hdf5'))
self.mapper = PhaseMapperRDRC(Kernel(self.mag_proj.a, self.mag_proj.dim[1:]))
def tearDown(self):
self.path = None
self.mag_proj = None
self.mapper = None
def test_PhaseMapperRDRC_call(self):
phase_ref = PhaseMap.load_from_hdf5(os.path.join(self.path, 'phase_map.hdf5'))
phase_map = self.mapper(self.mag_proj)
assert_allclose(phase_map.phase, phase_ref.phase, atol=1E-7,
err_msg='Unexpected behavior in __call__()!')
assert_allclose(phase_map.a, phase_ref.a, err_msg='Unexpected behavior in __call__()!')
def test_PhaseMapperRDRC_jac_dot(self):
phase = self.mapper(self.mag_proj).phase
mag_proj_vec = self.mag_proj.field[:2, ...].flatten()
phase_jac = self.mapper.jac_dot(mag_proj_vec).reshape(self.mapper.kernel.dim_uv)
assert_allclose(phase, phase_jac, atol=1E-7,
err_msg='Inconsistency between __call__() and jac_dot()!')
n = self.mapper.n
jac = np.array([self.mapper.jac_dot(np.eye(n)[:, i]) for i in range(n)]).T
jac_ref = np.load(os.path.join(self.path, 'jac.npy'))
assert_allclose(jac, jac_ref, atol=1E-7,
err_msg='Unexpected behaviour in the the jacobi matrix!')
def test_PhaseMapperRDRC_jac_T_dot(self):
m = self.mapper.m
jac_T = np.array([self.mapper.jac_T_dot(np.eye(m)[:, i]) for i in range(m)]).T
jac_T_ref = np.load(os.path.join(self.path, 'jac.npy')).T
assert_allclose(jac_T, jac_T_ref, atol=1E-7,
err_msg='Unexpected behaviour in the the transposed jacobi matrix!')
class TestCasePhaseMapperFDFCpad0(unittest.TestCase):
def setUp(self):
self.path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'test_phasemapper')
......
......@@ -147,11 +147,8 @@ setup(name=DISTNAME,
packages=find_packages(exclude=['tests']),
include_dirs=[numpy.get_include()],
requires=['numpy', 'scipy', 'matplotlib', 'Pillow',
'mayavi', 'pyfftw', 'hyperspy', 'Cython', 'nose'],
'mayavi', 'pyfftw', 'hyperspy', 'nose'],
scripts=get_files('scripts'),
test_suite='nose.collector',
cmdclass={'build_ext': build_ext, 'build': build},
ext_package='pyramid/numcore',
ext_modules=[Extension('phasemapper_core', ['pyramid/numcore/phasemapper_core.pyx'],
include_dirs=[numpy.get_include()])])
cmdclass={'build_ext': build_ext, 'build': build})
print('-------------------------------------------------------------------------------\n')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment