Skip to content
Snippets Groups Projects
Commit aa2f023c authored by Jan Caron's avatar Jan Caron
Browse files

IO functionality for Projectors (and an empty file for DataSets).

Projectors now have tqdm options to show progress.
parent 006b6c0d
No related branches found
No related tags found
No related merge requests found
...@@ -7,5 +7,6 @@ ...@@ -7,5 +7,6 @@
from .io_phasemap import load_phasemap from .io_phasemap import load_phasemap
from .io_vectordata import load_vectordata from .io_vectordata import load_vectordata
from .io_scalardata import load_scalardata from .io_scalardata import load_scalardata
from .io_projector import load_projector
__all__ = ['load_phasemap', 'load_vectordata', 'load_scalardata'] __all__ = ['load_phasemap', 'load_vectordata', 'load_scalardata', 'load_projector']
# -*- coding: utf-8 -*-
# Copyright 2016 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""IO functionality for FieldData objects."""
import logging
import os
from scipy.sparse import csr_matrix
import numpy as np
import h5py
from .. import projector
__all__ = ['load_projector']
_log = logging.getLogger(__name__)
def save_projector(projector, filename, overwrite=True):
"""%s"""
_log.debug('Calling save_projector')
name, extension = os.path.splitext(filename)
assert extension in ['.hdf5', ''], 'For now only HDF5 format is supported!'
filename = name + '.hdf5' # In case no extension is provided, set to HDF5!
if not os.path.isfile(filename) or overwrite: # Write if file does not exist of if forced:
with h5py.File(filename, 'w') as f:
class_name = projector.__class__.__name__
f.attrs['class'] = class_name
if class_name == 'SimpleProjector':
f.attrs['axis'] = projector.axis
else:
f.attrs['tilt'] = projector.tilt
if class_name == 'RotTiltProjector':
f.attrs['rotation'] = projector.rotation
f.attrs['dim'] = projector.dim
f.attrs['dim_uv'] = projector.dim_uv
f.create_dataset('data', data=projector.weight.data)
f.create_dataset('indptr', data=projector.weight.indptr)
f.create_dataset('indices', data=projector.weight.indices)
f.create_dataset('coeff', data=projector.coeff)
save_projector.__doc__ %= projector.Projector.save.__doc__
def load_projector(filename):
"""Load HDF5 file into a :class:`~pyramid.projector.Projector` instance (or a subclass).
Parameters
----------
filename: str
The filename to be loaded.
Returns
-------
projector : :class:`~.Projector`
A :class:`~.Projector` object containing the loaded data.
"""
_log.debug('Calling load_projector')
name, extension = os.path.splitext(filename)
assert extension in ['.hdf5', ''], 'For now only HDF5 format is supported!'
filename = name + '.hdf5' # In case no extension is provided, set to HDF5!
with h5py.File(filename, 'r') as f:
# Retrieve dimensions:
dim = f.attrs.get('dim')
dim_uv = f.attrs.get('dim_uv')
size_2d, size_3d = np.prod(dim_uv), np.prod(dim)
# Retrieve weight matrix:
data = f.get('data')
indptr = f.get('indptr')
indices = f.get('indices')
weight = csr_matrix((data, indices, indptr), shape=(size_2d, size_3d))
# Retrieve coefficients:
coeff = f.get('coeff')
# Construct projector:
result = projector.Projector(dim, dim_uv, weight, coeff)
# Specify projector type:
class_name = f.attrs.get('class')
result.__class__ = getattr(projector, class_name)
if class_name == 'SimpleProjector':
result.axis = f.attrs.get('axis')
else:
result.tilt = f.attrs.get('tilt')
if class_name == 'RotTiltProjector':
result.rotation = f.attrs.get('rotation')
# Return projector object:
return result
...@@ -5,10 +5,11 @@ ...@@ -5,10 +5,11 @@
"""This module provides the abstract base class :class:`~.Projector` and concrete subclasses for """This module provides the abstract base class :class:`~.Projector` and concrete subclasses for
projections of vector and scalar fields.""" projections of vector and scalar fields."""
import abc
import itertools import itertools
import logging import logging
from tqdm import tqdm
import numpy as np import numpy as np
from numpy import pi from numpy import pi
from scipy.sparse import coo_matrix, csr_matrix from scipy.sparse import coo_matrix, csr_matrix
...@@ -19,8 +20,8 @@ from pyramid.quaternion import Quaternion ...@@ -19,8 +20,8 @@ from pyramid.quaternion import Quaternion
__all__ = ['RotTiltProjector', 'XTiltProjector', 'YTiltProjector', 'SimpleProjector'] __all__ = ['RotTiltProjector', 'XTiltProjector', 'YTiltProjector', 'SimpleProjector']
class Projector(object, metaclass=abc.ABCMeta): class Projector(object):
"""Abstract base class representing a projection function. """Base class representing a projection function.
The :class:`~.Projector` class represents a projection function for a 3-dimensional The :class:`~.Projector` class represents a projection function for a 3-dimensional
vector- or scalar field onto a 2-dimensional grid. :class:`~.Projector` is an abstract base vector- or scalar field onto a 2-dimensional grid. :class:`~.Projector` is an abstract base
...@@ -50,12 +51,18 @@ class Projector(object, metaclass=abc.ABCMeta): ...@@ -50,12 +51,18 @@ class Projector(object, metaclass=abc.ABCMeta):
Size of the image space. Size of the image space.
n: int n: int
Size of the input space. Size of the input space.
sparsity : float
Measures the sparsity of the weighting (not the complete one!), 1 means completely sparse!
""" """
_log = logging.getLogger(__name__ + '.Projector') _log = logging.getLogger(__name__ + '.Projector')
@abc.abstractmethod @property
def sparsity(self):
"""The sparsity of the projector weight matrix."""
return 1. - len(self.weight.data) / np.prod(self.weight.shape)
def __init__(self, dim, dim_uv, weight, coeff): def __init__(self, dim, dim_uv, weight, coeff):
self._log.debug('Calling __init__') self._log.debug('Calling __init__')
self.dim = dim self.dim = dim
...@@ -193,7 +200,21 @@ class Projector(object, metaclass=abc.ABCMeta): ...@@ -193,7 +200,21 @@ class Projector(object, metaclass=abc.ABCMeta):
raise AssertionError('Vector size has to be suited either for ' raise AssertionError('Vector size has to be suited either for '
'vector- or scalar-field-projection!') 'vector- or scalar-field-projection!')
@abc.abstractmethod def save(self, filename, overwrite=True):
"""Saves the projector as an HDF5 file.
Parameters
----------
filename: str
Name of the file which the phasemap is saved into. The extension
determines the saving procedure.
overwrite: bool, optional
If True (default), an existing file will be overwritten, if False, this
(silently!) does nothing.
"""
from .file_io.io_projector import save_projector
save_projector(self, filename, overwrite)
def get_info(self, verbose): def get_info(self, verbose):
"""Get specific information about the projector as a string. """Get specific information about the projector as a string.
...@@ -209,7 +230,7 @@ class Projector(object, metaclass=abc.ABCMeta): ...@@ -209,7 +230,7 @@ class Projector(object, metaclass=abc.ABCMeta):
Information about the projector as a string, e.g. for the use in plot titles. Information about the projector as a string, e.g. for the use in plot titles.
""" """
raise NotImplementedError() return 'Base projector'
class RotTiltProjector(Projector): class RotTiltProjector(Projector):
...@@ -233,14 +254,12 @@ class RotTiltProjector(Projector): ...@@ -233,14 +254,12 @@ class RotTiltProjector(Projector):
Number of subpixels along one axis. This is used to create the lookup table which uses Number of subpixels along one axis. This is used to create the lookup table which uses
a discrete subgrid to estimate the impact point of a voxel onto a pixel and the weight on a discrete subgrid to estimate the impact point of a voxel onto a pixel and the weight on
all surrounding pixels. Default is 11 (odd numbers provide a symmetric center). all surrounding pixels. Default is 11 (odd numbers provide a symmetric center).
sparsity : float
Measures the sparsity of the weighting (not the complete one!), 1 means completely sparse!
""" """
_log = logging.getLogger(__name__ + '.RotTiltProjector') _log = logging.getLogger(__name__ + '.RotTiltProjector')
def __init__(self, dim, rotation, tilt, dim_uv=None, subcount=11): def __init__(self, dim, rotation, tilt, dim_uv=None, subcount=11, verbose=False):
self._log.debug('Calling __init__') self._log.debug('Calling __init__')
self.rotation = rotation self.rotation = rotation
self.tilt = tilt self.tilt = tilt
...@@ -273,7 +292,8 @@ class RotTiltProjector(Projector): ...@@ -273,7 +292,8 @@ class RotTiltProjector(Projector):
# Create 4D lookup table (1&2: which neighbour weight?, 3&4: which subpixel is hit?) # Create 4D lookup table (1&2: which neighbour weight?, 3&4: which subpixel is hit?)
weight_lookup = self._create_weight_lookup(subcount, R) weight_lookup = self._create_weight_lookup(subcount, R)
# Go over all voxels: # Go over all voxels:
for i, voxel in enumerate(voxels): disable = not verbose
for i, voxel in enumerate(tqdm(voxels, disable=disable, leave=False)):
column_index = voxel[0] * dim_y * dim_x + voxel[1] * dim_x + voxel[2] column_index = voxel[0] * dim_y * dim_x + voxel[1] * dim_x + voxel[2]
remainder, impact = np.modf(impacts[:, i]) # split index of impact and remainder! remainder, impact = np.modf(impacts[:, i]) # split index of impact and remainder!
sub_pixel = (remainder * subcount).astype(dtype=np.int) # sub_pixel inside impact px. sub_pixel = (remainder * subcount).astype(dtype=np.int) # sub_pixel inside impact px.
...@@ -293,7 +313,6 @@ class RotTiltProjector(Projector): ...@@ -293,7 +313,6 @@ class RotTiltProjector(Projector):
data.append(weight) data.append(weight)
# Calculate weight matrix and coefficients for jacobi matrix: # Calculate weight matrix and coefficients for jacobi matrix:
shape = (np.prod(dim_uv), np.prod(dim)) shape = (np.prod(dim_uv), np.prod(dim))
self.sparsity = 1. - len(data) / np.prod(shape, dtype=np.float)
weights = csr_matrix(coo_matrix((data, (rows, columns)), shape=shape)) weights = csr_matrix(coo_matrix((data, (rows, columns)), shape=shape))
# Calculate coefficients by rotating unity matrix (unit vectors, (x,y,z)): # Calculate coefficients by rotating unity matrix (unit vectors, (x,y,z)):
coeff = quat.matrix[:2, :].dot(np.eye(3)) coeff = quat.matrix[:2, :].dot(np.eye(3))
...@@ -373,7 +392,7 @@ class XTiltProjector(Projector): ...@@ -373,7 +392,7 @@ class XTiltProjector(Projector):
_log = logging.getLogger(__name__ + '.XTiltProjector') _log = logging.getLogger(__name__ + '.XTiltProjector')
def __init__(self, dim, tilt, dim_uv=None): def __init__(self, dim, tilt, dim_uv=None, verbose=False):
self._log.debug('Calling __init__') self._log.debug('Calling __init__')
self.tilt = tilt self.tilt = tilt
# Set starting variables: # Set starting variables:
...@@ -394,8 +413,9 @@ class XTiltProjector(Projector): ...@@ -394,8 +413,9 @@ class XTiltProjector(Projector):
row = [] row = []
col = [] col = []
data = [] data = []
# one slice: # One slice:
for i, voxel in enumerate(voxels): disable = not verbose
for i, voxel in enumerate(tqdm(voxels, disable=disable, leave=False, desc='first slice')):
impacts = self._get_impact(positions[i], r, dim_v) # impact along projected y-axis impacts = self._get_impact(positions[i], r, dim_v) # impact along projected y-axis
voxel_index = voxel[0] * dim_rot * dim_perp + voxel[1] * dim_rot # 0: z, 1: y voxel_index = voxel[0] * dim_rot * dim_perp + voxel[1] * dim_rot # 0: z, 1: y
for impact in impacts: for impact in impacts:
...@@ -408,12 +428,11 @@ class XTiltProjector(Projector): ...@@ -408,12 +428,11 @@ class XTiltProjector(Projector):
# All other slices (along x): # All other slices (along x):
columns = col columns = col
rows = row rows = row
for s in np.arange(1, dim_rot): for s in tqdm(np.arange(1, dim_rot), disable=disable, leave=False, desc='other slices'):
columns = np.hstack((np.array(columns), np.array(col) + s)) columns = np.hstack((np.array(columns), np.array(col) + s))
rows = np.hstack((np.array(rows), np.array(row) + s)) rows = np.hstack((np.array(rows), np.array(row) + s))
# Calculate weight matrix and coefficients for jacobi matrix: # Calculate weight matrix and coefficients for jacobi matrix:
shape = (np.prod(dim_uv), np.prod(dim)) shape = (np.prod(dim_uv), np.prod(dim))
self.sparsity = 1. - len(data) / np.prod(shape, dtype=np.float)
weight = csr_matrix(coo_matrix((np.tile(data, dim_rot), (rows, columns)), shape=shape)) weight = csr_matrix(coo_matrix((np.tile(data, dim_rot), (rows, columns)), shape=shape))
coeff = [[1, 0, 0], [0, np.cos(tilt), np.sin(tilt)]] coeff = [[1, 0, 0], [0, np.cos(tilt), np.sin(tilt)]]
super().__init__(dim, dim_uv, weight, coeff) super().__init__(dim, dim_uv, weight, coeff)
...@@ -488,7 +507,7 @@ class YTiltProjector(Projector): ...@@ -488,7 +507,7 @@ class YTiltProjector(Projector):
_log = logging.getLogger(__name__ + '.YTiltProjector') _log = logging.getLogger(__name__ + '.YTiltProjector')
def __init__(self, dim, tilt, dim_uv=None): def __init__(self, dim, tilt, dim_uv=None, verbose=False):
self._log.debug('Calling __init__') self._log.debug('Calling __init__')
self.tilt = tilt self.tilt = tilt
# Set starting variables: # Set starting variables:
...@@ -509,8 +528,9 @@ class YTiltProjector(Projector): ...@@ -509,8 +528,9 @@ class YTiltProjector(Projector):
row = [] row = []
col = [] col = []
data = [] data = []
# one slice: # One slice:
for i, voxel in enumerate(voxels): disable = not verbose
for i, voxel in enumerate(tqdm(voxels, disable=disable, leave=False)):
impacts = self._get_impact(positions[i], r, dim_u) # impact along projected x-axis impacts = self._get_impact(positions[i], r, dim_u) # impact along projected x-axis
voxel_index = voxel[0] * dim_perp * dim_rot + voxel[1] # 0: z, 1: x voxel_index = voxel[0] * dim_perp * dim_rot + voxel[1] # 0: z, 1: x
for impact in impacts: for impact in impacts:
...@@ -528,7 +548,6 @@ class YTiltProjector(Projector): ...@@ -528,7 +548,6 @@ class YTiltProjector(Projector):
rows = np.hstack((np.array(rows), np.array(row) + s * dim_u)) rows = np.hstack((np.array(rows), np.array(row) + s * dim_u))
# Calculate weight matrix and coefficients for jacobi matrix: # Calculate weight matrix and coefficients for jacobi matrix:
shape = (np.prod(dim_uv), np.prod(dim)) shape = (np.prod(dim_uv), np.prod(dim))
self.sparsity = 1. - len(data) / np.prod(shape, dtype=np.float)
weight = csr_matrix(coo_matrix((np.tile(data, dim_rot), (rows, columns)), shape=shape)) weight = csr_matrix(coo_matrix((np.tile(data, dim_rot), (rows, columns)), shape=shape))
coeff = [[np.cos(tilt), 0, np.sin(tilt)], [0, 1, 0]] coeff = [[np.cos(tilt), 0, np.sin(tilt)], [0, 1, 0]]
super().__init__(dim, dim_uv, weight, coeff) super().__init__(dim, dim_uv, weight, coeff)
...@@ -607,7 +626,7 @@ class SimpleProjector(Projector): ...@@ -607,7 +626,7 @@ class SimpleProjector(Projector):
# coordinate switch for 'x': u, v --> z, y (not y, z!)! # coordinate switch for 'x': u, v --> z, y (not y, z!)!
def __init__(self, dim, axis='z', dim_uv=None): def __init__(self, dim, axis='z', dim_uv=None, verbose=False):
self._log.debug('Calling __init__') self._log.debug('Calling __init__')
assert axis in {'z', 'y', 'x'}, 'Projection axis has to be x, y or z (given as a string)!' assert axis in {'z', 'y', 'x'}, 'Projection axis has to be x, y or z (given as a string)!'
self.axis = axis self.axis = axis
...@@ -655,7 +674,6 @@ class SimpleProjector(Projector): ...@@ -655,7 +674,6 @@ class SimpleProjector(Projector):
assert dim_uv[0] >= dim_v and dim_uv[1] >= dim_u, 'Projected dimensions are too small!' assert dim_uv[0] >= dim_v and dim_uv[1] >= dim_u, 'Projected dimensions are too small!'
# Create weight-matrix: # Create weight-matrix:
shape = (np.prod(dim_uv), np.prod(dim)) shape = (np.prod(dim_uv), np.prod(dim))
self.sparsity = 1. - len(data) / np.prod(shape, dtype=np.float)
weight = csr_matrix((data, indices, indptr), shape=shape) weight = csr_matrix((data, indices, indptr), shape=shape)
super().__init__(dim, dim_uv, weight, coeff) super().__init__(dim, dim_uv, weight, coeff)
self._log.debug('Created ' + str(self)) self._log.debug('Created ' + str(self))
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment