Newer
Older
# -*- coding: utf-8 -*-
"""Compare the different methods to create phase maps."""
import time
import pdb, traceback, sys
import numpy as np
from numpy import pi
import matplotlib.pyplot as plt
import pyramid.magcreator as mc
import pyramid.projector as pj
import pyramid.phasemapper as pm
import pyramid.analytic as an
from pyramid.magdata import MagData
from pyramid.phasemap import PhaseMap
import shelve
def phase_from_mag():
'''Calculate and display the phase map from a given magnetization.
Arguments:
None
Returns:
None
'''
# Create / Open databank:
data_shelve = shelve.open('../output/method_errors_shelve')
'''FOURIER PADDING->RMS|DURATION'''
# Parameters:
b_0 = 1 # in T
res = 10.0 # in nm
dim = (1, 128, 128)
phi = -pi/4
padding_list = [0, 0.25, 0.5, 0.75, 1, 1.5, 2, 3, 4,5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
geometry = 'disc'
# Create magnetic shape:
if geometry == 'slab':
center = (0, dim[1]/2-0.5, dim[2]/2-0.5) # in px (z, y, x) index starts with 0!
width = (1, dim[1]/2, dim[2]/2) # in px (z, y, x)
mag_shape = mc.Shapes.slab(dim, center, width)
phase_ana = an.phase_mag_slab(dim, res, phi, center, width, b_0)
center = (0, dim[1]/2-0.5, dim[2]/2-0.5) # in px (z, y, x) index starts with 0!
radius = dim[1]/4 # in px
height = 1 # in px
mag_shape = mc.Shapes.disc(dim, center, radius, height)
phase_ana = an.phase_mag_disc(dim, res, phi, center, radius, b_0)
mag_data = MagData(res, mc.create_mag_dist(mag_shape, phi))
projection = pj.simple_axis_projection(mag_data)
# Create data:
data = np.zeros((3, len(padding_list)))
data[0, :] = padding_list
for (i, padding) in enumerate(padding_list):
print 'padding =', padding_list[i]
# Key:
key = ', '.join(['Padding->RMS|duration', 'Fourier', 'padding={}'.format(padding_list[i]),
'B0={}'.format(b_0), 'res={}'.format(res), 'dim={}'.format(dim),
'phi={}'.format(phi), 'geometry={}'.format(geometry)])
if data_shelve.has_key(key):
data[:, i] = data_shelve[key]
else:
start_time = time.time()
phase_num = pm.phase_mag_fourier(res, projection, b_0, padding_list[i])
data[2, i] = time.time() - start_time
phase_diff = phase_ana - phase_num
PhaseMap(res, phase_diff).display()
data[1, i] = np.std(phase_diff)
data_shelve[key] = data[:, i]
# Plot duration against padding:
fig = plt.figure()
axis = fig.add_subplot(1, 1, 1)
axis.set_yscale('log')
axis.plot(data[0], data[1])
axis.set_title('Fourier Space Approach: Variation of the Padding')
axis.set_xlabel('padding')
axis.set_ylabel('RMS')
# Plot RMS against padding:
fig = plt.figure()
axis = fig.add_subplot(1, 1, 1)
axis.plot(data[0], data[2])
axis.set_title('Fourier Space Approach: Variation of the Padding')
axis.set_xlabel('padding')
axis.set_ylabel('duration [s]')
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
'''VARY DIMENSIONS FOR ALL APPROACHES'''
b_0 = 1 # in T
phi = -pi/4
dim_list = [(1, 4, 4), (1, 8, 8), (1, 16, 16), (1, 32, 32), (1, 64, 64), (1, 128, 128)]
res_list = [64., 32., 16., 8., 4., 2., 1.] # in nm
data_sl_p_fourier0 = np.zeros((3, len(res_list)))
data_sl_w_fourier0 = np.zeros((3, len(res_list)))
data_disc_fourier0 = np.zeros((3, len(res_list)))
data_sl_p_fourier1 = np.zeros((3, len(res_list)))
data_sl_w_fourier1 = np.zeros((3, len(res_list)))
data_disc_fourier1 = np.zeros((3, len(res_list)))
data_sl_p_fourier20 = np.zeros((3, len(res_list)))
data_sl_w_fourier20 = np.zeros((3, len(res_list)))
data_disc_fourier20 = np.zeros((3, len(res_list)))
data_sl_p_real_s = np.zeros((3, len(res_list)))
data_sl_w_real_s = np.zeros((3, len(res_list)))
data_disc_real_s = np.zeros((3, len(res_list)))
data_sl_p_real_d= np.zeros((3, len(res_list)))
data_sl_w_real_d = np.zeros((3, len(res_list)))
data_disc_real_d = np.zeros((3, len(res_list)))
data_slab_perfect[0, :] = res_list
data_slab_worst[0, :] = res_list
data_disc[0, :] = res_list
'''FOURIER UNPADDED'''
for i, (dim, res) in enumerate(zip(dim_list, res_list)):
print 'dim =', str(dim)
# ANALYTIC SOLUTIONS:
# Slab (perfectly aligned):
center = (0, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z, y, x) index starts with 0!
width = (1, dim[1], dim[2]) # in px (z, y, x)
mag_shape_slab_perfect = mc.Shapes.slab(dim, center, width)
phase_ana_slab_perfect = an.phase_mag_slab(dim, res, phi, center, width, b_0)
mag_data_slab_perfect = MagData(res, mc.create_mag_dist(mag_shape_slab_perfect, phi))
projection_slab_perfect = pj.simple_axis_projection(mag_data_slab_perfect)
# Slab (worst case):
center = (0, dim[1]/2, dim[2]/2) # in px (z, y, x) index starts with 0!
width = (1, dim[1], dim[2]) # in px (z, y, x)
mag_shape_slab_worst = mc.Shapes.slab(dim, center, width)
phase_ana_slab_worst = an.phase_mag_slab(dim, res, phi, center, width, b_0)
mag_data_slab_worst = MagData(res, mc.create_mag_dist(mag_shape_slab_worst, phi))
projection_slab_worst = pj.simple_axis_projection(mag_data_slab_worst)
# Disc:
center = (0, dim[1]/2.-0.5, dim[2]/2.-0.5) # in px (z, y, x) index starts with 0!
radius = dim[1]/2 # in px
height = 1 # in px
mag_shape_disc = mc.Shapes.disc(dim, center, radius, height)
phase_ana_disc = an.phase_mag_disc(dim, res, phi, center, radius, height, b_0)
mag_data_disc = MagData(res, mc.create_mag_dist(mag_shape_disc, phi))
projection_disc = pj.simple_axis_projection(mag_data_disc)
# NUMERICAL SOLUTIONS:
# Slab (perfectly aligned):
key = ', '.join(['Resolution->RMS|duration', 'Fourier', 'padding=0',
'B0={}'.format(b_0), 'res={}'.format(res), 'dim={}'.format(dim),
'phi={}'.format(phi), 'geometry=slab_perfect'])
if data_shelve.has_key(key):
data_slab_perfect[:, i] = data_shelve[key]
else:
start_time = time.time()
phase_num = pm.phase_mag_fourier(res, projection_slab_perfect, b_0, 0)
data_slab_perfect[2, i] = time.time() - start_time
phase_diff = phase_ana_slab_perfect - phase_num
data_slab_perfect[1, i] = np.std(phase_diff)
data_shelve[key] = data_slab_perfect[:, i]
# Slab (worst case):
key = ', '.join(['Resolution->RMS|duration', 'Fourier', 'padding=0',
'B0={}'.format(b_0), 'res={}'.format(res), 'dim={}'.format(dim),
'phi={}'.format(phi), 'geometry=slab_worst'])
if data_shelve.has_key(key):
data_slab_worst[:, i] = data_shelve[key]
else:
start_time = time.time()
phase_num = pm.phase_mag_fourier(res, projection_slab_worst, b_0, 0)
data_slab_worst[2, i] = time.time() - start_time
phase_diff = phase_ana_slab_worst - phase_num
data_slab_worst[1, i] = np.std(phase_diff)
data_shelve[key] = data_slab_worst[:, i]
# Disc:
key = ', '.join(['Resolution->RMS|duration', 'Fourier', 'padding=0',
'B0={}'.format(b_0), 'res={}'.format(res), 'dim={}'.format(dim),
'phi={}'.format(phi), 'geometry=disc'])
if data_shelve.has_key(key):
data_disc[:, i] = data_shelve[key]
else:
start_time = time.time()
phase_num = pm.phase_mag_fourier(res, projection_disc, b_0, 0)
data_disc[2, i] = time.time() - start_time
phase_diff = phase_ana_disc - phase_num
data_disc[1, i] = np.std(phase_diff)
data_shelve[key] = data_disc[:, i]
# Plot duration against res:
fig = plt.figure()
axis = fig.add_subplot(1, 1, 1)
axis.set_yscale('log')
axis.plot(data_slab_perfect[0], data_slab_perfect[1],
data_slab_worst[0], data_slab_worst[1],
data_disc[0], data_disc[1])
axis.set_title('Variation of the resolution (Fourier without padding)')
axis.set_xlabel('res [nm]')
axis.set_ylabel('RMS')
# Plot RMS against res:
fig = plt.figure()
axis = fig.add_subplot(1, 1, 1)
axis.plot(data_slab_perfect[0], data_slab_perfect[1],
data_slab_worst[0], data_slab_worst[1],
data_disc[0], data_disc[1])
axis.set_title('Variation of the resolution (Fourier without padding)')
axis.set_xlabel('res [nm]')
axis.set_ylabel('duration [s]')
data_shelve.close()