Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# Copyright 2016 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""This module provides classes for storing vector and scalar 3D-field."""
import logging
import os
import tempfile
import abc
from numbers import Number
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
from matplotlib import patheffects
from PIL import Image
from scipy.ndimage.interpolation import zoom
from . import colors
from . import plottools
__all__ = ['VectorData', 'ScalarData']
class FieldData(object, metaclass=abc.ABCMeta):
"""Class for storing field data.
Abstract base class for the representatio of magnetic or electric fields (see subclasses).
Fields can be accessed as 3D numpy arrays via the `field` property or as a vector via
`field_vec`. :class:`~.FieldData` objects support negation, arithmetic operators
(``+``, ``-``, ``*``) and their augmented counterparts (``+=``, ``-=``, ``*=``), with numbers
and other :class:`~.FieldData` objects of the same subclass, if their dimensions and grid
spacings match. It is possible to load data from HDF5 or LLG (.txt) files or to save the data
in these formats. Specialised plotting methods are also provided.
Attributes
----------
a: float
The grid spacing in nm.
field: :class:`~numpy.ndarray` (N=4)
The field distribution for every 3D-gridpoint.
"""
_log = logging.getLogger(__name__ + '.FieldData')
@property
def a(self):
"""The grid spacing in nm."""
return self._a
@a.setter
def a(self, a):
assert isinstance(a, Number), 'Grid spacing has to be a number!'
assert a >= 0, 'Grid spacing has to be a positive number!'
self._a = float(a)
@property
def shape(self):
"""The shape of the `field` (3D for scalar, 4D vor vector field)."""
return self.field.shape
@property
def dim(self):
"""Dimensions (z, y, x) of the grid, only 3D coordinates, without components if present."""
return self.shape[-3:]
@property
def field(self):
"""The field strength for every 3D-gridpoint (scalar: 3D, vector: 4D)."""
return self._field
@field.setter
def field(self, field):
assert isinstance(field, np.ndarray), 'Field has to be a numpy array!'
assert 3 <= len(field.shape) <= 4, 'Field has to be 3- or 4-dimensional (scalar / vector)!'
if len(field.shape) == 4:
assert field.shape[0] == 3, 'A vector field has to have exactly 3 components!'
self._field = field
@property
def field_amp(self):
"""The field amplitude (returns the field itself for scalar and the vector amplitude
calculated via a square sum for a vector field."""
if len(self.shape) == 4:
return np.sqrt(np.sum(self.field ** 2, axis=0))
else:
return self.field
@property
def field_vec(self):
"""Vector containing the vector field distribution."""
return np.reshape(self.field, -1)
@field_vec.setter
def field_vec(self, mag_vec):
assert np.size(mag_vec) == np.prod(self.shape), \
'Vector has to match field shape! {} {}'.format(mag_vec.shape, np.prod(self.shape))
self.field = mag_vec.reshape((3,) + self.dim)
def __init__(self, a, field):
self._log.debug('Calling __init__')
self.a = a
self.field = field
self._log.debug('Created ' + str(self))
def __repr__(self):
self._log.debug('Calling __repr__')
return '%s(a=%r, field=%r)' % (self.__class__, self.a, self.field)
def __str__(self):
self._log.debug('Calling __str__')
return '%s(a=%s, dim=%s)' % (self.__class__, self.a, self.dim)
def __neg__(self): # -self
self._log.debug('Calling __neg__')
return self.__class__(self.a, -self.field)
def __add__(self, other): # self + other
self._log.debug('Calling __add__')
assert isinstance(other, (FieldData, Number)), \
'Only FieldData objects and scalar numbers (as offsets) can be added/subtracted!'
if isinstance(other, Number): # other is a Number
self._log.debug('Adding an offset')
return self.__class__(self.a, self.field + other)
elif isinstance(other, FieldData):
self._log.debug('Adding two FieldData objects')
assert other.a == self.a, 'Added phase has to have the same grid spacing!'
assert other.shape == self.shape, 'Added field has to have the same dimensions!'
return self.__class__(self.a, self.field + other.field)
def __sub__(self, other): # self - other
self._log.debug('Calling __sub__')
return self.__add__(-other)
def __mul__(self, other): # self * other
self._log.debug('Calling __mul__')
assert isinstance(other, Number), 'FieldData objects can only be multiplied by numbers!'
return self.__class__(self.a, self.field * other)
def __truediv__(self, other): # self / other
self._log.debug('Calling __truediv__')
assert isinstance(other, Number), 'FieldData objects can only be divided by numbers!'
return self.__class__(self.a, self.field / other)
def __floordiv__(self, other): # self // other
self._log.debug('Calling __floordiv__')
assert isinstance(other, Number), 'FieldData objects can only be divided by numbers!'
return self.__class__(self.a, self.field // other)
def __radd__(self, other): # other + self
self._log.debug('Calling __radd__')
return self.__add__(other)
def __rsub__(self, other): # other - self
self._log.debug('Calling __rsub__')
return -self.__sub__(other)
def __rmul__(self, other): # other * self
self._log.debug('Calling __rmul__')
return self.__mul__(other)
def __iadd__(self, other): # self += other
self._log.debug('Calling __iadd__')
return self.__add__(other)
def __isub__(self, other): # self -= other
self._log.debug('Calling __isub__')
return self.__sub__(other)
def __imul__(self, other): # self *= other
self._log.debug('Calling __imul__')
return self.__mul__(other)
def __itruediv__(self, other): # self /= other
self._log.debug('Calling __itruediv__')
return self.__truediv__(other)
def __ifloordiv__(self, other): # self //= other
self._log.debug('Calling __ifloordiv__')
return self.__floordiv__(other)
def __getitem__(self, item):
return self.__class__(self.a, self.field[item])
def __array__(self, dtype=None): # Used for numpy ufuncs, together with __array_wrap__!
if dtype:
return self.field.astype(dtype)
else:
return self.field
def __array_wrap__(self, array, _=None): # _ catches the context, which is not used.
return type(self)(self.a, array)
def copy(self):
"""Returns a copy of the :class:`~.FieldData` object
Returns
-------
field_data: :class:`~.FieldData`
A copy of the :class:`~.FieldData`.
"""
self._log.debug('Calling copy')
return self.__class__(self.a, self.field.copy())
def get_mask(self, threshold=0):
"""Mask all pixels where the amplitude of the field lies above `threshold`.
Parameters
----------
threshold : float, optional
A pixel only gets masked, if it lies above this threshold . The default is 0.
Returns
-------
mask : :class:`~numpy.ndarray` (N=3, boolean)
Mask of the pixels where the amplitude of the field lies above `threshold`.
"""
self._log.debug('Calling get_mask')
return np.where(self.field_amp > threshold, True, False)
def plot_mask(self, title='Mask', threshold=0, **kwargs):
"""Plot the mask as a 3D-contour plot.
Parameters
----------
title: string, optional
The title for the plot.
threshold : float, optional
A pixel only gets masked, if it lies above this threshold . The default is 0.
Returns
-------
plot : :class:`mayavi.modules.vectors.Vectors`
The plot object.
"""
self._log.debug('Calling plot_mask')
from mayavi import mlab
mlab.figure(size=(750, 700))
zzz, yyy, xxx = (np.indices(self.dim) + self.a / 2)
zzz, yyy, xxx = zzz.T, yyy.T, xxx.T
mask = self.get_mask(threshold=threshold).astype(int).T # Transpose because of VTK order!
extent = np.ravel(list(zip((0, 0, 0), mask.shape)))
cont = mlab.contour3d(xxx, yyy, zzz, mask, contours=[1], **kwargs)
mlab.outline(cont, extent=extent)
mlab.axes(cont, extent=extent)
mlab.title(title, height=0.95, size=0.35)
mlab.orientation_axes()
cont.scene.isometric_view()
return cont
def plot_contour3d(self, title='Field Distribution', contours=10, opacity=0.25, **kwargs):
"""Plot the field as a 3D-contour plot.
Parameters
----------
title: string, optional
The title for the plot.
contours: int, optional
Number of contours which should be plotted.
opacity: float, optional
Defines the opacity of the contours. Default is 0.25.
Returns
-------
plot : :class:`mayavi.modules.vectors.Vectors`
The plot object.
"""
self._log.debug('Calling plot_contour3d')
from mayavi import mlab
mlab.figure(size=(750, 700))
zzz, yyy, xxx = (np.indices(self.dim) + self.a / 2)
zzz, yyy, xxx = zzz.T, yyy.T, xxx.T
field_amp = self.field_amp.T # Transpose because of VTK order!
if not isinstance(contours, (list, tuple, np.ndarray)): # Calculate the contours:
contours = list(np.linspace(field_amp.min(), field_amp.max(), contours))
extent = np.ravel(list(zip((0, 0, 0), field_amp.shape)))
cont = mlab.contour3d(xxx, yyy, zzz, field_amp, contours=contours,
opacity=opacity, **kwargs)
mlab.outline(cont, extent=extent)
mlab.axes(cont, extent=extent)
mlab.title(title, height=0.95, size=0.35)
mlab.orientation_axes()
cont.scene.isometric_view()
return cont
@abc.abstractmethod
def scale_down(self, n):
"""Scale down the field distribution by averaging over two pixels along each axis.
Parameters
----------
n : int, optional
Number of times the field distribution is scaled down. The default is 1.
Returns
-------
None
Notes
-----
Acts in place and changes dimensions and grid spacing accordingly.
Only possible, if each axis length is a power of 2!
"""
pass
@abc.abstractmethod
def scale_up(self, n, order):
"""Scale up the field distribution using spline interpolation of the requested order.
Parameters
----------
n : int, optional
Power of 2 with which the grid is scaled. Default is 1, which means every axis is
increased by a factor of ``2**1 = 2``.
order : int, optional
The order of the spline interpolation, which has to be in the range between 0 and 5
and defaults to 0.
Returns
-------
None
Notes
-----
Acts in place and changes dimensions and grid spacing accordingly.
"""
pass
@abc.abstractmethod
def get_vector(self, mask):
"""Returns the field as a vector, specified by a mask.
Parameters
----------
mask : :class:`~numpy.ndarray` (N=3, boolean)
Masks the pixels from which the entries should be taken.
Returns
-------
vector : :class:`~numpy.ndarray` (N=1)
The vector containing the field of the specified pixels.
"""
pass
@abc.abstractmethod
def set_vector(self, vector, mask):
"""Set the field of the masked pixels to the values specified by `vector`.
Parameters
----------
mask : :class:`~numpy.ndarray` (N=3, boolean), optional
Masks the pixels from which the field should be taken.
vector : :class:`~numpy.ndarray` (N=1)
The vector containing the field of the specified pixels.
Returns
-------
None
"""
pass
@classmethod
def from_signal(cls, signal):
"""Convert a :class:`~hyperspy.signals.Signal` object to a :class:`~.FieldData` object.
Parameters
----------
signal: :class:`~hyperspy.signals.Signal`
The :class:`~hyperspy.signals.Signal` object which should be converted to FieldData.
Returns
-------
magdata: :class:`~.FieldData`
A :class:`~.FieldData` object containing the loaded data.
Notes
-----
This method recquires the hyperspy package!
"""
cls._log.debug('Calling from_signal')
return cls(signal.axes_manager[0].scale, signal.data)
@abc.abstractmethod
def to_signal(self):
"""Convert :class:`~.FieldData` data into a HyperSpy signal.
Returns
-------
signal: :class:`~hyperspy.signals.Signal`
Representation of the :class:`~.FieldData` object as a HyperSpy Signal.
Notes
-----
This method recquires the hyperspy package!
"""
self._log.debug('Calling to_signal')
try: # Try importing HyperSpy:
# noinspection PyUnresolvedReferences
import hyperspy.api as hs
except ImportError:
self._log.error('This method recquires the hyperspy package!')
return
# Create signal:
signal = hs.signals.BaseSignal(self.field) # All axes are signal axes!
# Set axes:
signal.axes_manager[0].name = 'x-axis'
signal.axes_manager[0].units = 'nm'
signal.axes_manager[0].scale = self.a
signal.axes_manager[1].name = 'y-axis'
signal.axes_manager[1].units = 'nm'
signal.axes_manager[1].scale = self.a
signal.axes_manager[2].name = 'z-axis'
signal.axes_manager[2].units = 'nm'
signal.axes_manager[2].scale = self.a
return signal
class VectorData(FieldData):
"""Class for storing vector ield data.
Represents 3-dimensional vector field distributions with 3 components which are stored as a
3-dimensional numpy array in `field`, but which can also be accessed as a vector via
`field_vec`. :class:`~.VectorData` objects support negation, arithmetic operators
(``+``, ``-``, ``*``) and their augmented counterparts (``+=``, ``-=``, ``*=``), withnumbers
and other :class:`~.VectorData` objects, if their dimensions and grid spacings match. It is
possible to load data from HDF5 or LLG (.txt) files or to save the data in these formats.
Plotting methods are also provided.
Attributes
----------
a: float
The grid spacing in nm.
field: :class:`~numpy.ndarray` (N=4)
The `x`-, `y`- and `z`-component of the vector field for every 3D-gridpoint
as a 4-dimensional numpy array (first dimension has to be 3, because of the 3 components).
"""
_log = logging.getLogger(__name__ + '.VectorData')
def scale_down(self, n=1):
"""Scale down the field distribution by averaging over two pixels along each axis.
Parameters
----------
n : int, optional
Number of times the field distribution is scaled down. The default is 1.
Returns
-------
None
Notes
-----
Acts in place and changes dimensions and grid spacing accordingly.
Only possible, if each axis length is a power of 2!
"""
self._log.debug('Calling scale_down')
assert n > 0 and isinstance(n, int), 'n must be a positive integer!'
self.a *= 2 ** n
for t in range(n):
# Pad if necessary:
pz, py, px = self.dim[0] % 2, self.dim[1] % 2, self.dim[2] % 2
if pz != 0 or py != 0 or px != 0:
self.field = np.pad(self.field, ((0, 0), (0, pz), (0, py), (0, px)),
mode='constant')
# Create coarser grid for the vector field:
shape_4d = (3, self.dim[0] // 2, 2, self.dim[1] // 2, 2, self.dim[2] // 2, 2)
self.field = self.field.reshape(shape_4d).mean(axis=(6, 4, 2))
def scale_up(self, n=1, order=0):
"""Scale up the field distribution using spline interpolation of the requested order.
Parameters
----------
n : int, optional
Power of 2 with which the grid is scaled. Default is 1, which means every axis is
increased by a factor of ``2**1 = 2``.
order : int, optional
The order of the spline interpolation, which has to be in the range between 0 and 5
and defaults to 0.
Returns
-------
None
Notes
-----
Acts in place and changes dimensions and grid spacing accordingly.
"""
self._log.debug('Calling scale_up')
assert n > 0 and isinstance(n, int), 'n must be a positive integer!'
assert 5 > order >= 0 and isinstance(order, int), \
'order must be a positive integer between 0 and 5!'
self.a /= 2 ** n
self.field = np.array((zoom(self.field[0], zoom=2 ** n, order=order),
zoom(self.field[1], zoom=2 ** n, order=order),
zoom(self.field[2], zoom=2 ** n, order=order)))
def pad(self, pad_values):
"""Pad the current field distribution with zeros for each individual axis.
Parameters
----------
pad_values : tuple of int
Number of zeros which should be padded. Provided as a tuple where each entry
corresponds to an axis. An entry can be one int (same padding for both sides) or again
a tuple which specifies the pad values for both sides of the corresponding axis.
Returns
-------
None
Notes
-----
Acts in place and changes dimensions accordingly.
"""
self._log.debug('Calling pad')
assert len(pad_values) == 3, 'Pad values for each dimension have to be provided!'
pv = np.zeros(6, dtype=np.int)
for i, values in enumerate(pad_values):
assert np.shape(values) in [(), (2,)], 'Only one or two values per axis can be given!'
pv[2 * i:2 * (i + 1)] = values
self.field = np.pad(self.field, ((0, 0), (pv[0], pv[1]), (pv[2], pv[3]), (pv[4], pv[5])),
mode='constant')
def crop(self, crop_values):
"""Crop the current field distribution with zeros for each individual axis.
Parameters
----------
crop_values : tuple of int
Number of zeros which should be cropped. Provided as a tuple where each entry
corresponds to an axis. An entry can be one int (same cropping for both sides) or again
a tuple which specifies the crop values for both sides of the corresponding axis.
Returns
-------
None
Notes
-----
Acts in place and changes dimensions accordingly.
"""
self._log.debug('Calling crop')
assert len(crop_values) == 3, 'Crop values for each dimension have to be provided!'
cv = np.zeros(6, dtype=np.int)
for i, values in enumerate(crop_values):
assert np.shape(values) in [(), (2,)], 'Only one or two values per axis can be given!'
cv[2 * i:2 * (i + 1)] = values
cv *= np.resize([1, -1], len(cv))
cv = np.where(cv == 0, None, cv)
self.field = self.field[:, cv[0]:cv[1], cv[2]:cv[3], cv[4]:cv[5]]
def get_vector(self, mask):
"""Returns the vector field components arranged in a vector, specified by a mask.
Parameters
----------
mask : :class:`~numpy.ndarray` (N=3, boolean)
Masks the pixels from which the components should be taken.
Returns
-------
vector : :class:`~numpy.ndarray` (N=1)
The vector containing vector field components of the specified pixels.
Order is: first all `x`-, then all `y`-, then all `z`-components.
"""
self._log.debug('Calling get_vector')
if mask is not None:
return np.reshape([self.field[0][mask],
self.field[1][mask],
self.field[2][mask]], -1)
else:
return self.field_vec
def set_vector(self, vector, mask=None):
"""Set the field components of the masked pixels to the values specified by `vector`.
Parameters
----------
mask : :class:`~numpy.ndarray` (N=3, boolean), optional
Masks the pixels from which the components should be taken.
vector : :class:`~numpy.ndarray` (N=1)
The vector containing vector field components of the specified pixels.
Order is: first all `x`-, then all `y-, then all `z`-components.
Returns
-------
None
"""
self._log.debug('Calling set_vector')
assert np.size(vector) % 3 == 0, 'Vector has to contain all 3 components for every pixel!'
count = np.size(vector) // 3
if mask is not None:
self.field[0][mask] = vector[:count] # x-component
self.field[1][mask] = vector[count:2 * count] # y-component
self.field[2][mask] = vector[2 * count:] # z-component
else:
self.field_vec = vector
def flip(self, axis='x'):
"""Flip/mirror the vector field around the specified axis.
Parameters
----------
axis: {'x', 'y', 'z'}, optional
The axis around which the vector field is flipped.
Returns
-------
magdata_flip: :class:`~.VectorData`
A flipped copy of the :class:`~.VectorData` object.
"""
self._log.debug('Calling flip')
if axis == 'x':
mag_x, mag_y, mag_z = self.field[:, :, :, ::-1]
field_flip = np.array((-mag_x, mag_y, mag_z))
elif axis == 'y':
mag_x, mag_y, mag_z = self.field[:, :, ::-1, :]
field_flip = np.array((mag_x, -mag_y, mag_z))
elif axis == 'z':
mag_x, mag_y, mag_z = self.field[:, ::-1, :, :]
field_flip = np.array((mag_x, mag_y, -mag_z))
else:
raise ValueError("Wrong input! 'x', 'y', 'z' allowed!")
return VectorData(self.a, field_flip)
def rot90(self, axis='x'):
"""Rotate the vector field 90° around the specified axis (right hand rotation).
Parameters
----------
axis: {'x', 'y', 'z'}, optional
The axis around which the vector field is rotated.
Returns
-------
magdata_rot: :class:`~.VectorData`
A rotated copy of the :class:`~.VectorData` object.
"""
self._log.debug('Calling rot90')
if axis == 'x':
field_rot = np.zeros((3, self.dim[1], self.dim[0], self.dim[2]))
for i in range(self.dim[2]):
mag_x, mag_y, mag_z = self.field[:, :, :, i]
mag_xrot, mag_yrot, mag_zrot = np.rot90(mag_x), np.rot90(mag_y), np.rot90(mag_z)
field_rot[:, :, :, i] = np.array((mag_xrot, mag_zrot, -mag_yrot))
elif axis == 'y':
field_rot = np.zeros((3, self.dim[2], self.dim[1], self.dim[0]))
for i in range(self.dim[1]):
mag_x, mag_y, mag_z = self.field[:, :, i, :]
mag_xrot, mag_yrot, mag_zrot = np.rot90(mag_x), np.rot90(mag_y), np.rot90(mag_z)
field_rot[:, :, i, :] = np.array((mag_zrot, mag_yrot, -mag_xrot))
elif axis == 'z':
field_rot = np.zeros((3, self.dim[0], self.dim[2], self.dim[1]))
for i in range(self.dim[0]):
mag_x, mag_y, mag_z = self.field[:, i, :, :]
mag_xrot, mag_yrot, mag_zrot = np.rot90(mag_x), np.rot90(mag_y), np.rot90(mag_z)
field_rot[:, i, :, :] = np.array((mag_yrot, -mag_xrot, mag_zrot))
else:
raise ValueError("Wrong input! 'x', 'y', 'z' allowed!")
return VectorData(self.a, field_rot)
def get_slice(self, ax_slice=None, proj_axis='z'):
"""Extract a slice from the :class:`~.VectorData` object.
Parameters
----------
proj_axis : {'z', 'y', 'x'}, optional
The axis, from which the slice is taken. The default is 'z'.
ax_slice : None or int, optional
The slice-index of the axis specified in `proj_axis`. Defaults to the center slice.
Returns
-------
u_mag, v_mag, w_mag, submask : :class:`~numpy.ndarray` (N=2)
The extracted vector field components in plane perpendicular to the `proj_axis` and
the perpendicular component.
"""
self._log.debug('Calling get_slice')
# Find slice:
assert proj_axis == 'z' or proj_axis == 'y' or proj_axis == 'x', \
'Axis has to be x, y or z (as string).'
if ax_slice is None:
ax_slice = self.dim[{'z': 0, 'y': 1, 'x': 2}[proj_axis]] // 2
if proj_axis == 'z': # Slice of the xy-plane with z = ax_slice
self._log.debug('proj_axis == z')
u_mag = np.copy(self.field[0][ax_slice, ...]) # x-component
v_mag = np.copy(self.field[1][ax_slice, ...]) # y-component
w_mag = np.copy(self.field[2][ax_slice, ...]) # z-component
elif proj_axis == 'y': # Slice of the xz-plane with y = ax_slice
self._log.debug('proj_axis == y')
u_mag = np.copy(self.field[0][:, ax_slice, :]) # x-component
v_mag = np.copy(self.field[2][:, ax_slice, :]) # z-component
w_mag = np.copy(self.field[1][:, ax_slice, :]) # y-component
elif proj_axis == 'x': # Slice of the zy-plane with x = ax_slice
self._log.debug('proj_axis == x')
u_mag = np.swapaxes(np.copy(self.field[2][..., ax_slice]), 0, 1) # z-component
v_mag = np.swapaxes(np.copy(self.field[1][..., ax_slice]), 0, 1) # y-component
w_mag = np.swapaxes(np.copy(self.field[0][..., ax_slice]), 0, 1) # x-component
else:
raise ValueError('{} is not a valid argument (use x, y or z)'.format(proj_axis))
return u_mag, v_mag, w_mag
def to_signal(self):
"""Convert :class:`~.VectorData` data into a HyperSpy signal.
Returns
-------
signal: :class:`~hyperspy.signals.Signal`
Representation of the :class:`~.VectorData` object as a HyperSpy Signal.
Notes
-----
This method recquires the hyperspy package!
"""
self._log.debug('Calling to_signal')
signal = super().to_signal()
# Set component axis:
signal.axes_manager[3].name = 'x/y/z-component'
signal.axes_manager[3].units = ''
# Set metadata:
signal.metadata.Signal.title = 'VectorData'
# Return signal:
return signal
def save(self, filename, **kwargs):
"""Saves the VectorData in the specified format.
The function gets the format from the extension:
- hdf5 for HDF5.
- EMD Electron Microscopy Dataset format (also HDF5).
- llg format.
- ovf format.
- npy or npz for numpy formats.
If no extension is provided, 'hdf5' is used. Most formats are
saved with the HyperSpy package (internally the fielddata is first
converted to a HyperSpy Signal.
Each format accepts a different set of parameters. For details
see the specific format documentation.
Parameters
----------
filename : str, optional
Name of the file which the VectorData is saved into. The extension
determines the saving procedure.
"""
from .file_io.io_vectordata import save_vectordata
save_vectordata(self, filename, **kwargs)
def plot_quiver(self, ar_dens=1, log=False, scaled=True, scale=1., b_0=None, # Only used here!
coloring='angle', cmap=None, # Used here and plot_streamlines!
proj_axis='z', ax_slice=None, show_mask=True, bgcolor=None, axis=None,
figsize=None, **kwargs):
"""Plot a slice of the vector field as a quiver plot.
Parameters
----------
ar_dens: int, optional
Number defining the arrow density which is plotted. A higher ar_dens number skips more
arrows (a number of 2 plots every second arrow). Default is 1.
log : boolean, optional
The loratihm of the arrow length is plotted instead. This is helpful if only the
direction of the arrows is important and the amplitude varies a lot. Default is False.
scaled : boolean, optional
Normalizes the plotted arrows in respect to the highest one. Default is True.
scale: float, optional
Additional multiplicative factor scaling the arrow length. Default is 1
(no further scaling).
b_0 : float, optional
Saturation induction (saturation magnetisation times the vacuum permeability).
If this is specified, a quiverkey is used to indicate the length of the longest arrow.
coloring : {'angle', 'amplitude', 'uniform', matplotlib color}
Color coding mode of the arrows. Use 'full' (default), 'angle', 'amplitude', 'uniform'
(black or white, depending on `bgcolor`), or a matplotlib color keyword.
cmap : string, optional
The :class:`~matplotlib.colors.Colormap` which is used for the plot as a string.
If not set, an appropriate one is used. Note that a subclass of
:class:`~.colors.Colormap3D` should be used for angle encoding.
proj_axis : {'z', 'y', 'x'}, optional
The axis, from which a slice is plotted. The default is 'z'.
ax_slice : int, optional
The slice-index of the axis specified in `proj_axis`. Is set to the center of
`proj_axis` if not specified.
show_mask: boolean
Default is True. Shows the outlines of the mask slice if available.
bgcolor: {'white', 'black'}, optional
Determines the background color of the plot.
axis : :class:`~matplotlib.axes.AxesSubplot`, optional
Axis on which the graph is plotted. Creates a new figure if none is specified.
figsize : tuple of floats (N=2)
Size of the plot figure.
Returns
-------
axis: :class:`~matplotlib.axes.AxesSubplot`
The axis on which the graph is plotted.
Notes
-----
Uses :func:`~.plottools.format_axis` at the end. According keywords can also be given here.
"""
self._log.debug('Calling plot_quiver')
a = self.a
if figsize is None:
figsize = plottools.FIGSIZE_DEFAULT
assert proj_axis == 'z' or proj_axis == 'y' or proj_axis == 'x', \
'Axis has to be x, y or z (as string).'
if ax_slice is None:
ax_slice = self.dim[{'z': 0, 'y': 1, 'x': 2}[proj_axis]] // 2
# Extract slice and mask:
u_mag, v_mag = self.get_slice(ax_slice, proj_axis)[:2]
submask = np.where(np.hypot(u_mag, v_mag) > 0, True, False)
# Prepare quiver (select only used arrows if ar_dens is specified):
dim_uv = u_mag.shape
vv, uu = np.indices(dim_uv) + 0.5 # shift to center of pixel
uu = uu[::ar_dens, ::ar_dens]
vv = vv[::ar_dens, ::ar_dens]
u_mag = u_mag[::ar_dens, ::ar_dens]
v_mag = v_mag[::ar_dens, ::ar_dens]
amplitudes = np.hypot(u_mag, v_mag)
angles = np.angle(u_mag + 1j * v_mag, deg=True).tolist()
# Calculate the arrow colors:
if bgcolor is None:
bgcolor = 'white' # Default!
cmap_overwrite = cmap
if coloring == 'angle':
self._log.debug('Encoding angles')
hue = np.asarray(np.arctan2(v_mag, u_mag) / (2 * np.pi))
hue[hue < 0] += 1
cmap = colors.CMAP_CIRCULAR_DEFAULT
elif coloring == 'amplitude':
self._log.debug('Encoding amplitude')
hue = amplitudes / amplitudes.max()
if bgcolor == 'white':
cmap = colors.cmaps['cubehelix_reverse']
else:
cmap = colors.cmaps['cubehelix_standard']
elif coloring == 'uniform':
self._log.debug('Automatic uniform color encoding')
hue = amplitudes / amplitudes.max()
if bgcolor == 'white':
cmap = colors.cmaps['transparent_black']
else:
cmap = colors.cmaps['transparent_white']
else:
self._log.debug('Specified uniform color encoding')
hue = np.zeros_like(u_mag)
cmap = ListedColormap([coloring])
if cmap_overwrite is not None:
cmap = cmap_overwrite
# If no axis is specified, a new figure is created:
if axis is None:
self._log.debug('axis is None')
fig = plt.figure(figsize=figsize)
axis = fig.add_subplot(1, 1, 1)
tight = True
else:
tight = False
axis.set_aspect('equal')
# Take the logarithm of the arrows to clearly show directions (if specified):
if log and np.any(amplitudes): # If the slice is empty, skip!
cutoff = 10
amp = np.round(amplitudes, decimals=cutoff)
min_value = amp[np.nonzero(amp)].min()
u_mag = np.round(u_mag, decimals=cutoff) / min_value
u_mag = np.log10(np.abs(u_mag) + 1) * np.sign(u_mag)
v_mag = np.round(v_mag, decimals=cutoff) / min_value
v_mag = np.log10(np.abs(v_mag) + 1) * np.sign(v_mag)
amplitudes = np.hypot(u_mag, v_mag) # Recalculate (used if scaled)!
# Scale the amplitude of the arrows to the highest one (if specified):
if scaled:
u_mag /= amplitudes.max() + 1E-30
v_mag /= amplitudes.max() + 1E-30
# Plot quiver:
# TODO: quiver does not work with matplotlib 2.0! FIX!
quiv = axis.quiver(uu, vv, u_mag, v_mag, hue, cmap=cmap, clim=(0, 1), angles=angles,
pivot='middle', units='xy', scale_units='xy', scale=scale / ar_dens,
minlength=0.05, width=1*ar_dens, headlength=2, headaxislength=2,
headwidth=2, minshaft=2)
axis.set_xlim(0, dim_uv[1])
axis.set_ylim(0, dim_uv[0])
# Determine colormap if necessary:
if coloring == 'amplitude':
cbar_mappable, cbar_label = quiv, 'amplitude'
else:
cbar_mappable, cbar_label = None, None
# Change background color:
axis.set_axis_bgcolor(bgcolor)
# Show mask:
if show_mask and not np.all(submask): # Plot mask if desired and not trivial!
vv, uu = np.indices(dim_uv) + 0.5 # shift to center of pixel
mask_color = 'white' if bgcolor == 'black' else 'black'
axis.contour(uu, vv, submask, levels=[0.5], colors=mask_color,
linestyles='dotted', linewidths=2)
# Plot quiverkey if B_0 is specified):
if b_0 and not log: # The angles needed for log would break the quiverkey!
label = '{:.3g} T'.format(amplitudes.max() * b_0)
quiv.angles = 'uv' # With a list of angles, the quiverkey would break!
stroke = plottools.STROKE_DEFAULT
txtcolor = 'w' if stroke == 'k' else 'k'
edgecolor = stroke if stroke is not None else 'none'
fontsize = kwargs.get('fontsize', None)
if fontsize is None:
fontsize = plottools.FONTSIZE_DEFAULT
qk = plt.quiverkey(Q=quiv, X=0.88, Y=0.065, U=1, label=label, labelpos='W',
coordinates='axes', facecolor=txtcolor, edgecolor=edgecolor,
labelcolor=txtcolor, linewidth=0.5,
clip_box=axis.bbox, clip_on=True,
fontproperties={'size': kwargs.get('fontsize', fontsize)})
if stroke is not None:
qk.text.set_path_effects(
[patheffects.withStroke(linewidth=2, foreground=stroke)])
# Return formatted axis:
return plottools.format_axis(axis, sampling=a, cbar_mappable=cbar_mappable,
cbar_label=cbar_label, tight_layout=tight, **kwargs)
def plot_field(self, proj_axis='z', ax_slice=None, show_mask=True, bgcolor=None, axis=None,
figsize=None, **kwargs):
"""Plot a slice of the vector field as a color field imshow plot.
Parameters
----------
proj_axis : {'z', 'y', 'x'}, optional
The axis, from which a slice is plotted. The default is 'z'.
ax_slice : int, optional
The slice-index of the axis specified in `proj_axis`. Is set to the center of
`proj_axis` if not specified.
show_mask: boolean
Default is True. Shows the outlines of the mask slice if available.
bgcolor: {'white', 'black'}, optional
Determines the background color of the plot.
axis : :class:`~matplotlib.axes.AxesSubplot`, optional
Axis on which the graph is plotted. Creates a new figure if none is specified.
figsize : tuple of floats (N=2)
Size of the plot figure.
Returns
-------
axis: :class:`~matplotlib.axes.AxesSubplot`
The axis on which the graph is plotted.
Notes
-----
Uses :func:`~.plottools.format_axis` at the end. According keywords can also be given here.
"""
self._log.debug('Calling plot_field')
a = self.a
if figsize is None:
figsize = plottools.FIGSIZE_DEFAULT
assert proj_axis == 'z' or proj_axis == 'y' or proj_axis == 'x', \
'Axis has to be x, y or z (as string).'
if ax_slice is None:
ax_slice = self.dim[{'z': 0, 'y': 1, 'x': 2}[proj_axis]] // 2
# Extract slice and mask:
u_mag, v_mag, w_mag = self.get_slice(ax_slice, proj_axis)
submask = np.where(np.hypot(u_mag, v_mag) > 0, True, False)
# If no axis is specified, a new figure is created:
if axis is None:
self._log.debug('axis is None')
fig = plt.figure(figsize=figsize)
axis = fig.add_subplot(1, 1, 1)
tight = True
else:
tight = False
axis.set_aspect('equal')
# Determine 'z'-component for luminance (keep as gray if None):
z_mag = w_mag
if bgcolor == 'white':
z_mag = np.where(submask, z_mag, np.max(np.hypot(u_mag, v_mag)))