Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
# -*- coding: utf-8 -*-
# Copyright 2014 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""This module provides the abstract base class :class:`~.Projector` and concrete subclasses for
projections of vector and scalar fields."""
import itertools
import logging
try:
if type(get_ipython()).__name__ == 'ZMQInteractiveShell': # IPython Notebook!
from tqdm import tqdm_notebook as tqdm
else: # IPython, but not a Notebook (e.g. terminal)
from tqdm import tqdm
except NameError:
from tqdm import tqdm
import numpy as np
from numpy import pi
from scipy.sparse import coo_matrix, csr_matrix
from pyramid.fielddata import VectorData, ScalarData
from pyramid.quaternion import Quaternion
__all__ = ['RotTiltProjector', 'XTiltProjector', 'YTiltProjector', 'SimpleProjector']
class Projector(object):
"""Base class representing a projection function.
The :class:`~.Projector` class represents a projection function for a 3-dimensional
vector- or scalar field onto a 2-dimensional grid. :class:`~.Projector` is an abstract base
class and provides a unified interface which should be subclassed with a custom
:func:`__init__` function, which should call the parent :func:`__init__` method. Concrete
subclasses can be called as a function and take a `vector` as argument which contains the
3-dimensional field. The output is the projected field, given as a `vector`. Depending on the
length of the input and the given dimensions `dim` at construction time, vector or scalar
projection is choosen intelligently.
Attributes
----------
dim : tuple (N=3)
Dimensions (z, y, x) of the magnetization distribution.
dim_uv : tuple (N=2)
Dimensions (v, u) of the projected grid.
size_3d : int
Number of voxels of the 3-dimensional grid.
size_2d : int
Number of pixels of the 2-dimensional projected grid.
weight : :class:`~scipy.sparse.csr_matrix` (N=2)
The weight matrix containing the weighting coefficients for the 3D to 2D mapping.
coeff : list (N=2)
List containing the six weighting coefficients describing the influence of the 3 components
of a 3-dimensional vector field on the 2 projected components.
m: int
Size of the image space.
n: int
Size of the input space.
sparsity : float
Measures the sparsity of the weighting (not the complete one!), 1 means completely sparse!
"""
_log = logging.getLogger(__name__ + '.Projector')
@property
def sparsity(self):
"""The sparsity of the projector weight matrix."""
return 1. - len(self.weight.data) / np.prod(self.weight.shape)
def __init__(self, dim, dim_uv, weight, coeff):
self._log.debug('Calling __init__')
self.dim = tuple(dim)
self.dim_uv = tuple(dim_uv)
self.weight = weight
self.coeff = coeff
self.size_2d, self.size_3d = weight.shape
self.n = 3 * np.prod(dim)
self.m = 2 * np.prod(dim_uv)
self._log.debug('Created ' + str(self))
def __repr__(self):
self._log.debug('Calling __repr__')
return '%s(dim=%r, dim_uv=%r, weight=%r, coeff=%r)' % \
(self.__class__, self.dim, self.dim_uv, self.weight, self.coeff)
def __str__(self):
self._log.debug('Calling __str__')
return 'Projector(dim=%s, dim_uv=%s, coeff=%s)' % (self.dim, self.dim_uv, self.coeff)
def __call__(self, field_data):
if isinstance(field_data, VectorData):
field_empty = np.zeros((3, 1) + self.dim_uv, dtype=field_data.field.dtype)
field_data_proj = VectorData(field_data.a, field_empty)
field_proj = self.jac_dot(field_data.field_vec).reshape((2,) + self.dim_uv)
field_data_proj.field[0:2, 0, ...] = field_proj
elif isinstance(field_data, ScalarData):
field_empty = np.zeros((1,) + self.dim_uv, dtype=field_data.field.dtype)
field_data_proj = ScalarData(field_data.a, field_empty)
field_proj = self.jac_dot(field_data.field_vec).reshape(self.dim_uv)
field_data_proj.field[0, ...] = field_proj
else:
raise TypeError('Input is neither of type VectorData or ScalarData')
return field_data_proj
def _vector_field_projection(self, vector):
result = np.zeros(2 * self.size_2d, dtype=vector.dtype)
# Go over all possible component projections (z, y, x) to (u, v):
vec_x, vec_y, vec_z = np.split(vector, 3)
vec_x_weighted = self.weight.dot(vec_x)
vec_y_weighted = self.weight.dot(vec_y)
vec_z_weighted = self.weight.dot(vec_z)
slice_u = slice(0, self.size_2d)
slice_v = slice(self.size_2d, 2 * self.size_2d)
if self.coeff[0][0] != 0: # x to u
result[slice_u] += self.coeff[0][0] * vec_x_weighted
if self.coeff[0][1] != 0: # y to u
result[slice_u] += self.coeff[0][1] * vec_y_weighted
if self.coeff[0][2] != 0: # z to u
result[slice_u] += self.coeff[0][2] * vec_z_weighted
if self.coeff[1][0] != 0: # x to v
result[slice_v] += self.coeff[1][0] * vec_x_weighted
if self.coeff[1][1] != 0: # y to v
result[slice_v] += self.coeff[1][1] * vec_y_weighted
if self.coeff[1][2] != 0: # z to v
result[slice_v] += self.coeff[1][2] * vec_z_weighted
return result
def _vector_field_projection_T(self, vector):
result = np.zeros(3 * self.size_3d)
# Go over all possible component projections (u, v) to (z, y, x):
vec_u, vec_v = np.split(vector, 2)
vec_u_weighted = self.weight.T.dot(vec_u)
vec_v_weighted = self.weight.T.dot(vec_v)
slice_x = slice(0, self.size_3d)
slice_y = slice(self.size_3d, 2 * self.size_3d)
slice_z = slice(2 * self.size_3d, 3 * self.size_3d)
if self.coeff[0][0] != 0: # u to x
result[slice_x] += self.coeff[0][0] * vec_u_weighted
if self.coeff[0][1] != 0: # u to y
result[slice_y] += self.coeff[0][1] * vec_u_weighted
if self.coeff[0][2] != 0: # u to z
result[slice_z] += self.coeff[0][2] * vec_u_weighted
if self.coeff[1][0] != 0: # v to x
result[slice_x] += self.coeff[1][0] * vec_v_weighted
if self.coeff[1][1] != 0: # v to y
result[slice_y] += self.coeff[1][1] * vec_v_weighted
if self.coeff[1][2] != 0: # v to z
result[slice_z] += self.coeff[1][2] * vec_v_weighted
return result
def _scalar_field_projection(self, vector):
self._log.debug('Calling _scalar_field_projection')
return np.array(self.weight.dot(vector))
def _scalar_field_projection_T(self, vector):
self._log.debug('Calling _scalar_field_projection_T')
return np.array(self.weight.T.dot(vector))
def jac_dot(self, vector):
"""Multiply a `vector` with the jacobi matrix of this :class:`~.Projector` object.
Parameters
----------
vector : :class:`~numpy.ndarray` (N=1)
Vector containing the field which should be projected. Must have the same or 3 times
the size of `size_3d` of the projector for scalar and vector projection, respectively.
Returns
-------
proj_vector : :class:`~numpy.ndarray` (N=1)
Vector containing the projected field of the 2-dimensional grid. The length is
always`size_2d`.
"""
if len(vector) == 3 * self.size_3d: # mode == 'vector'
return self._vector_field_projection(vector)
elif len(vector) == self.size_3d: # mode == 'scalar'
return self._scalar_field_projection(vector)
else:
raise AssertionError('Vector size has to be suited either for '
'vector- or scalar-field-projection!')
def jac_T_dot(self, vector):
"""Multiply a `vector` with the transp. jacobi matrix of this :class:`~.Projector` object.
Parameters
----------
vector : :class:`~numpy.ndarray` (N=1)
Vector containing the field which should be projected. Must have the same or 2 times
the size of `size_2d` of the projector for scalar and vector projection, respectively.
Returns
-------
proj_vector : :class:`~numpy.ndarray` (N=1)
Vector containing the multiplication of the input with the transposed jacobi matrix
of the :class:`~.Projector` object.
"""
if len(vector) == 2 * self.size_2d: # mode == 'vector'
return self._vector_field_projection_T(vector)
elif len(vector) == self.size_2d: # mode == 'scalar'
return self._scalar_field_projection_T(vector)
else:
raise AssertionError('Vector size has to be suited either for '
'vector- or scalar-field-projection!')
def save(self, filename, overwrite=True):
"""Saves the projector as an HDF5 file.
Parameters
----------
filename: str
Name of the file which the phasemap is saved into. HDF5 files are supported.
overwrite: bool, optional
If True (default), an existing file will be overwritten, if False, this
(silently!) does nothing.
"""
from .file_io.io_projector import save_projector
save_projector(self, filename, overwrite)
def get_info(self, verbose):
"""Get specific information about the projector as a string.
Parameters
----------
verbose: boolean, optional
If this is true, the text looks prettier (maybe using latex). Default is False for the
use in file names and such.
Returns
-------
info : string
Information about the projector as a string, e.g. for the use in plot titles.
"""
return 'Base projector'
class RotTiltProjector(Projector):
"""Class representing a projection function with a rotation around z followed by tilt around x.
The :class:`~.XTiltProjector` class represents a projection function for a 3-dimensional
vector- or scalar field onto a 2-dimensional grid, which is a concrete subclass of
:class:`~.Projector`.
Attributes
----------
dim : tuple (N=3)
Dimensions (z, y, x) of the magnetization distribution.
rotation : float
Angle in `rad` describing the rotation around the z-axis before the tilt is happening.
tilt : float
Angle in `rad` describing the tilt of the beam direction relative to the x-axis.
dim_uv : tuple (N=2), optional
Dimensions (v, u) of the projection. If not set defaults to the (y, x)-dimensions.
subcount : int (optional)
Number of subpixels along one axis. This is used to create the lookup table which uses
a discrete subgrid to estimate the impact point of a voxel onto a pixel and the weight on
all surrounding pixels. Default is 11 (odd numbers provide a symmetric center).
"""
_log = logging.getLogger(__name__ + '.RotTiltProjector')
def __init__(self, dim, rotation, tilt, dim_uv=None, subcount=11, verbose=False):
self._log.debug('Calling __init__')
self.rotation = rotation
self.tilt = tilt
# Determine dimensions:
dim_z, dim_y, dim_x = dim
center = (dim_z / 2., dim_y / 2., dim_x / 2.)
if dim_uv is None:
dim_v = max(dim_x, dim_y) # first rotate around z-axis (take x and y into account)
dim_u = max(dim_v, dim_z) # then tilt around x-axis (now z matters, too)
dim_uv = (dim_v, dim_u)
dim_v, dim_u = dim_uv
# Creating coordinate list of all voxels:
voxels = list(itertools.product(range(dim_z), range(dim_y), range(dim_x)))
# Calculate vectors to voxels relative to rotation center:
voxel_vecs = (np.asarray(voxels) + 0.5 - np.asarray(center)).T
# Create tilt, rotation and combined quaternion, careful: Quaternion(w,x,y,z), not (z,y,x):
quat_x = Quaternion.from_axisangle((1, 0, 0), tilt) # Tilt around x-axis
quat_z = Quaternion.from_axisangle((0, 0, 1), rotation) # Rotate around z-axis
quat = quat_x * quat_z # Combined quaternion (first rotate around z, then tilt around x)
# Calculate impact positions on the projected pixel coordinate grid (flip because quat.):
impacts = np.flipud(quat.matrix[:2, :].dot(np.flipud(voxel_vecs))) # only care for x/y
impacts[1, :] += dim_u / 2. # Shift back to normal indices
impacts[0, :] += dim_v / 2. # Shift back to normal indices
# Calculate equivalence radius:
R = (3 / (4 * np.pi)) ** (1 / 3.)
# Prepare weight matrix calculation:
rows = [] # 2D projection
columns = [] # 3D distribution
data = [] # weights
# Create 4D lookup table (1&2: which neighbour weight?, 3&4: which subpixel is hit?)
weight_lookup = self._create_weight_lookup(subcount, R)
# Go over all voxels:
disable = not verbose
for i, voxel in enumerate(tqdm(voxels, disable=disable, leave=False,
desc='Set up projector')):
column_index = voxel[0] * dim_y * dim_x + voxel[1] * dim_x + voxel[2]
remainder, impact = np.modf(impacts[:, i]) # split index of impact and remainder!
sub_pixel = (remainder * subcount).astype(dtype=np.int) # sub_pixel inside impact px.
# Go over all influenced pixels (impact and neighbours, indices are [0, 1, 2]!):
for px_ind in list(itertools.product(range(3), range(3))):
# Pixel indices influenced by the impact (px_ind-1 to center them around impact):
pixel = (impact + np.array(px_ind) - 1).astype(dtype=np.int)
# Check if pixel is out of bound:
if 0 <= pixel[0] < dim_uv[0] and 0 <= pixel[1] < dim_uv[1]:
# Lookup weight in 4-dimensional lookup table!
weight = weight_lookup[px_ind[0], px_ind[1], sub_pixel[0], sub_pixel[1]]
# Only write into sparse matrix if weight is not zero:
if weight != 0.:
row_index = pixel[0] * dim_u + pixel[1]
columns.append(column_index)
rows.append(row_index)
data.append(weight)
# Calculate weight matrix and coefficients for jacobi matrix:
shape = (np.prod(dim_uv), np.prod(dim))
weights = csr_matrix(coo_matrix((data, (rows, columns)), shape=shape))
# Calculate coefficients by rotating unity matrix (unit vectors, (x,y,z)):
coeff = quat.matrix[:2, :].dot(np.eye(3))
super().__init__(dim, dim_uv, weights, coeff)
self._log.debug('Created ' + str(self))
@staticmethod
def _create_weight_lookup(subcount, R):
s = subcount
Rz = R * s # Radius in subgrid units
dim_zoom = (3 * s, 3 * s) # Dimensions of the subgrid, (3, 3) because of neighbour count!
cent_zoom = (np.asarray(dim_zoom) / 2.).astype(dtype=np.int) # Center of the subgrid
y, x = np.indices(dim_zoom)
y -= cent_zoom[0]
x -= cent_zoom[1]
# Calculate projected thickness of an equivalence sphere (normed!):
d = np.where(np.hypot(x, y) <= Rz, Rz ** 2 - x ** 2 - y ** 2, 0)
d = np.sqrt(d)
d /= d.sum()
# Create lookup table (4D):
lookup = np.zeros((3, 3, s, s))
# Go over all 9 pixels (center and neighbours):
for pixel in list(itertools.product(range(3), range(3))):
pixel_lb = np.array(pixel) * s # Convert to subgrid, hit bottom left of the pixel!
# Go over all subpixels in the center that can be hit:
for sub_pixel in list(itertools.product(range(s), range(s))):
shift = np.array(sub_pixel) - np.array((s // 2, s // 2)) # relative to center!
lb = pixel_lb - shift # Shift summing zone according to hit subpixel!
# Make sure, that the summing zone is in bounds (otherwise correct accordingly):
lb = np.where(lb >= 0, lb, [0, 0])
tr = np.where(lb < 3 * s, lb + np.array((s, s)), [3 * s, 3 * s])
# Calculate weight by summing over the summing zone:
weight = d[lb[0]:tr[0], lb[1]:tr[1]].sum()
lookup[pixel[0], pixel[1], sub_pixel[0], sub_pixel[1]] = weight
return lookup
def get_info(self, verbose=False):
"""Get specific information about the projector as a string.
Parameters
----------
verbose: boolean, optional
If this is true, the text looks prettier (maybe using latex). Default is False for the
use in file names and such.
Returns
-------
info : string
Information about the projector as a string, e.g. for the use in plot titles.
"""
theta_ang = int(np.round(self.rotation * 180 / pi))
phi_ang = int(np.round(self.tilt * 180 / pi))
if verbose:
return u'$\\theta = {:d}$°, $\phi = {:d}$°'.format(theta_ang, phi_ang)
else:
return u'theta={:d}_phi={:d}°'.format(theta_ang, phi_ang)
class XTiltProjector(Projector):
"""Class representing a projection function with a tilt around the x-axis.
The :class:`~.XTiltProjector` class represents a projection function for a 3-dimensional
vector- or scalar field onto a 2-dimensional grid, which is a concrete subclass of
:class:`~.Projector`.
Attributes
----------
dim : tuple (N=3)
Dimensions (z, y, x) of the magnetization distribution.
tilt : float
Angle in `rad` describing the tilt of the beam direction relative to the x-axis.
dim_uv : tuple (N=2), optional
Dimensions (v, u) of the projection. If not set defaults to the (y, x)-dimensions.
"""
_log = logging.getLogger(__name__ + '.XTiltProjector')
def __init__(self, dim, tilt, dim_uv=None, verbose=False):
self._log.debug('Calling __init__')
self.tilt = tilt
# Set starting variables:
# length along projection (proj, z), perpendicular (perp, y) and rotation (rot, x) axis:
dim_proj, dim_perp, dim_rot = dim
if dim_uv is None:
dim_uv = (max(dim_perp, dim_proj), dim_rot) # x-y-plane
dim_v, dim_u = dim_uv # y, x
assert dim_v >= dim_perp and dim_u >= dim_rot, 'Projected dimensions are too small!'
# Creating coordinate list of all voxels (for one slice):
voxels = list(itertools.product(range(dim_proj), range(dim_perp))) # z-y-plane
# Calculate positions along the projected pixel coordinate system:
center = (dim_proj / 2., dim_perp / 2.)
positions = self._get_position(voxels, center, tilt, dim_v)
# Calculate weight-matrix:
r = 1 / np.sqrt(np.pi) # radius of the voxel circle
rho = 0.5 / r
row = []
col = []
data = []
# One slice:
disable = not verbose
for i, voxel in enumerate(tqdm(voxels, disable=disable, leave=False,
desc='Set up projector')):
impacts = self._get_impact(positions[i], r, dim_v) # impact along projected y-axis
voxel_index = voxel[0] * dim_rot * dim_perp + voxel[1] * dim_rot # 0: z, 1: y
for impact in impacts:
impact_index = impact * dim_u + (dim_u - dim_rot) // 2
distance = np.abs(impact + 0.5 - positions[i])
delta = distance / r
col.append(voxel_index)
row.append(impact_index)
data.append(self._get_weight(delta, rho))
# All other slices (along x):
data = np.tile(data, dim_rot)
columns = np.tile(col, dim_rot)
rows = np.tile(row, dim_rot)
addition = np.repeat(np.arange(dim_rot), len(row))
columns += addition
rows += addition
# Calculate weight matrix and coefficients for jacobi matrix:
shape = (np.prod(dim_uv), np.prod(dim))
weight = csr_matrix(coo_matrix((data, (rows, columns)), shape=shape))
coeff = [[1, 0, 0], [0, np.cos(tilt), np.sin(tilt)]]
super().__init__(dim, dim_uv, weight, coeff)
self._log.debug('Created ' + str(self))
@staticmethod
def _get_position(points, center, tilt, size):
point_vecs = np.asarray(points) + 0.5 - np.asarray(center) # vectors pointing to points
direc_vec = np.array((np.cos(tilt), -np.sin(tilt))) # vector pointing along projection
distances = np.cross(direc_vec, point_vecs) # here (special case): divisor is one!
distances += size / 2. # Shift to the center of the projection
return distances
@staticmethod
def _get_impact(pos, r, size):
return [x for x in np.arange(np.floor(pos - r), np.floor(pos + r) + 1, dtype=int)
if 0 <= x < size]
@staticmethod
def _get_weight(delta, rho): # use circles to represent the voxels
lo, up = delta - rho, delta + rho
# Upper boundary:
if up >= 1:
w_up = 0.5
else:
w_up = (up * np.sqrt(1 - up ** 2) + np.arctan(up / np.sqrt(1 - up ** 2))) / pi
# Lower boundary:
if lo <= -1:
w_lo = -0.5
else:
w_lo = (lo * np.sqrt(1 - lo ** 2) + np.arctan(lo / np.sqrt(1 - lo ** 2))) / pi
return w_up - w_lo
def get_info(self, verbose=False):
"""Get specific information about the projector as a string.
Parameters
----------
verbose: boolean, optional
If this is true, the text looks prettier (maybe using latex). Default is False for the
use in file names and such.
Returns
-------
info : string
Information about the projector as a string, e.g. for the use in plot titles.
"""
if verbose:
return u'x-tilt: $\phi = {:d}$°'.format(int(np.round(self.tilt * 180 / pi)))
else:
return u'xtilt_phi={:d}°'.format(int(np.round(self.tilt * 180 / pi)))
class YTiltProjector(Projector):
"""Class representing a projection function with a tilt around the y-axis.
The :class:`~.YTiltProjector` class represents a projection function for a 3-dimensional
vector- or scalar field onto a 2-dimensional grid, which is a concrete subclass of
:class:`~.Projector`.
Attributes
----------
dim : tuple (N=3)
Dimensions (z, y, x) of the magnetization distribution.
tilt : float
Angle in `rad` describing the tilt of the beam direction relative to the y-axis.
dim_uv : tuple (N=2), optional
Dimensions (v, u) of the projection. If not set defaults to the (y, x)-dimensions.
"""
_log = logging.getLogger(__name__ + '.YTiltProjector')
def __init__(self, dim, tilt, dim_uv=None, verbose=False):
self._log.debug('Calling __init__')
self.tilt = tilt
# Set starting variables:
# length along projection (proj, z), rotation (rot, y) and perpendicular (perp, x) axis:
dim_proj, dim_rot, dim_perp = dim
if dim_uv is None:
dim_uv = (dim_rot, max(dim_perp, dim_proj)) # x-y-plane
dim_v, dim_u = dim_uv # y, x
assert dim_v >= dim_rot and dim_u >= dim_perp, 'Projected dimensions are too small!'
# Creating coordinate list of all voxels (for one slice):
voxels = list(itertools.product(range(dim_proj), range(dim_perp))) # z-x-plane
# Calculate positions along the projected pixel coordinate system:
center = (dim_proj / 2., dim_perp / 2.)
positions = self._get_position(voxels, center, tilt, dim_u)
# Calculate weight-matrix:
r = 1 / np.sqrt(np.pi) # radius of the voxel circle
rho = 0.5 / r
row = []
col = []
data = []
# One slice:
disable = not verbose
for i, voxel in enumerate(tqdm(voxels, disable=disable, leave=False,
desc='Set up projector')):
impacts = self._get_impact(positions[i], r, dim_u) # impact along projected x-axis
voxel_index = voxel[0] * dim_perp * dim_rot + voxel[1] # 0: z, 1: x
for impact in impacts:
impact_index = impact + (dim_v - dim_rot) // 2 * dim_u
distance = np.abs(impact + 0.5 - positions[i])
delta = distance / r
col.append(voxel_index)
row.append(impact_index)
data.append(self._get_weight(delta, rho))
# All other slices (along y):
data = np.tile(data, dim_rot)
columns = np.tile(col, dim_rot)
rows = np.tile(row, dim_rot)
addition = np.repeat(np.arange(dim_rot), len(row))
columns += addition * dim_perp
rows += addition * dim_u
# Calculate weight matrix and coefficients for jacobi matrix:
shape = (np.prod(dim_uv), np.prod(dim))
weight = csr_matrix(coo_matrix((data, (rows, columns)), shape=shape))
coeff = [[np.cos(tilt), 0, np.sin(tilt)], [0, 1, 0]]
super().__init__(dim, dim_uv, weight, coeff)
self._log.debug('Created ' + str(self))
@staticmethod
def _get_position(points, center, tilt, size):
point_vecs = np.asarray(points) + 0.5 - np.asarray(center) # vectors pointing to points
direc_vec = np.array((np.cos(tilt), -np.sin(tilt))) # vector pointing along projection
distances = np.cross(direc_vec, point_vecs) # here (special case): divisor is one!
distances += size / 2. # Shift to the center of the projection
return distances
@staticmethod
def _get_impact(pos, r, size):
return [x for x in np.arange(np.floor(pos - r), np.floor(pos + r) + 1, dtype=int)
if 0 <= x < size]
@staticmethod
def _get_weight(delta, rho): # use circles to represent the voxels
lo, up = delta - rho, delta + rho
# Upper boundary:
if up >= 1:
w_up = 0.5
else:
w_up = (up * np.sqrt(1 - up ** 2) + np.arctan(up / np.sqrt(1 - up ** 2))) / pi
# Lower boundary:
if lo <= -1:
w_lo = -0.5
else:
w_lo = (lo * np.sqrt(1 - lo ** 2) + np.arctan(lo / np.sqrt(1 - lo ** 2))) / pi
return w_up - w_lo
def get_info(self, verbose=False):
"""Get specific information about the projector as a string.
Parameters
----------
verbose: boolean, optional
If this is true, the text looks prettier (maybe using latex). Default is False for the
use in file names and such.
Returns
-------
info : string
Information about the projector as a string, e.g. for the use in plot titles.
"""
if verbose:
return u'y-tilt: $\phi = {:d}$°'.format(int(np.round(self.tilt * 180 / pi)))
else:
return u'ytilt_phi={:d}°'.format(int(np.round(self.tilt * 180 / pi)))
class SimpleProjector(Projector):
"""Class representing a projection function along one of the major axes.
The :class:`~.SimpleProjector` class represents a projection function for a 3-dimensional
vector- or scalar field onto a 2-dimensional grid, which is a concrete subclass of
:class:`~.Projector`.
Attributes
----------
dim : tuple (N=3)
Dimensions (z, y, x) of the magnetization distribution.
axis : {'z', 'y', 'x'}, optional
Main axis along which the magnetic distribution is projected (given as a string). Defaults
to the z-axis.
dim_uv : tuple (N=2), optional
Dimensions (v, u) of the projection. If not set it uses the 3D default dimensions.
"""
_log = logging.getLogger(__name__ + '.SimpleProjector')
AXIS_DICT = {'z': (0, 1, 2), 'y': (1, 0, 2), 'x': (2, 1, 0)} # (0:z, 1:y, 2:x) -> (proj, v, u)
# coordinate switch for 'x': u, v --> z, y (not y, z!)!
def __init__(self, dim, axis='z', dim_uv=None, verbose=False):
self._log.debug('Calling __init__')
assert axis in {'z', 'y', 'x'}, 'Projection axis has to be x, y or z (given as a string)!'
self.axis = axis
proj, v, u = self.AXIS_DICT[axis]
dim_proj, dim_v, dim_u = dim[proj], dim[v], dim[u]
dim_z, dim_y, dim_x = dim
size_2d = dim_u * dim_v
size_3d = np.prod(dim)
data = np.repeat(1, size_3d) # size_3d ones in the matrix (each voxel is projected)
indptr = np.arange(0, size_3d + 1, dim_proj) # each row has dim_proj 1-entries
if axis == 'z':
self._log.debug('Projecting along the z-axis')
coeff = [[1, 0, 0], [0, 1, 0]]
indices = np.array([np.arange(row, size_3d, size_2d)
for row in range(size_2d)]).reshape(-1)
elif axis == 'y':
self._log.debug('Projection along the y-axis')
coeff = [[1, 0, 0], [0, 0, 1]]
indices = np.array(
[np.arange(row % dim_x, dim_x * dim_y, dim_x) + row // dim_x * dim_x * dim_y
for row in range(size_2d)]).reshape(-1)
elif axis == 'x':
self._log.debug('Projection along the x-axis')
coeff = [[0, 0, 1], [0, 1, 0]] # Caution, coordinate switch: u, v --> z, y (not y, z!)
indices = np.array(
[np.arange(dim_x) + (row % dim_z) * dim_x * dim_y + row // dim_z * dim_x
for row in range(size_2d)]).reshape(-1)
else:
raise ValueError('{} is not a valid axis parameter (use x, y or z)!'.format(axis))
if dim_uv is not None:
indptr = list(indptr) # convert to use insert() and append()
# Calculate padding:
d_v = (np.floor((dim_uv[0] - dim_v) / 2).astype(int),
np.ceil((dim_uv[0] - dim_v) / 2).astype(int))
d_u = (np.floor((dim_uv[1] - dim_u) / 2).astype(int),
np.ceil((dim_uv[1] - dim_u) / 2).astype(int))
indptr.extend([indptr[-1]] * d_v[1] * dim_uv[1]) # add empty lines at the end
for i in np.arange(dim_v, 0, -1): # all slices in between
up, lo = i * dim_u, (i - 1) * dim_u # upper / lower slice end
indptr[up:up] = [indptr[up]] * d_u[1] # end of the slice
indptr[lo:lo] = [indptr[lo]] * d_u[0] # start of the slice
indptr = [0] * d_v[0] * dim_uv[1] + indptr # insert empty rows at the beginning
else: # Make sure dim_uv is defined (used for the assertion)
dim_uv = dim_v, dim_u
assert dim_uv[0] >= dim_v and dim_uv[1] >= dim_u, 'Projected dimensions are too small!'
# Create weight-matrix:
shape = (np.prod(dim_uv), np.prod(dim))
weight = csr_matrix((data, indices, indptr), shape=shape)
super().__init__(dim, dim_uv, weight, coeff)
self._log.debug('Created ' + str(self))
def get_info(self, verbose=False):
"""Get specific information about the projector as a string.
Parameters
----------
verbose: boolean, optional
If this is true, the text looks prettier (maybe using latex). Default is False for the
use in file names and such.
Returns
-------
info : string
Information about the projector as a string, e.g. for the use in plot titles.
"""
if verbose:
return 'projected along {}-axis'.format(self.axis)
else:
return '{}axis'.format(self.axis)