Newer
Older
# Copyright 2014 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""This module provides the :class:`~.DataSet` class for the collection of phase maps
and additional data like corresponding projectors."""
import numpy as np
from numbers import Number
from scipy import sparse
import matplotlib.pyplot as plt
from pyramid.phasemap import PhaseMap
from pyramid.phasemapper import PhaseMapperRDFC
from pyramid.projector import Projector
from pyramid.kernel import Kernel
import logging
class DataSet(object):
'''Class for collecting phase maps and corresponding projectors.
Represents a collection of (e.g. experimentally derived) phase maps, stored as
:class:`~.PhaseMap` objects and corresponding projectors stored as :class:`~.Projector`
objects. At creation, the grid spacing `a` and the dimension `dim` of the magnetization
distribution have to be given. Data can be added via the :func:`~.append` method, where
a :class:`~.PhaseMap`, a :class:`~.Projector` and additional info have to be given.
Attributes
----------
a: float
The grid spacing in nm.
dim: tuple (N=3)
Dimensions of the 3D magnetization distribution.
phase_maps:
A list of all stored :class:`~.PhaseMap` objects.
b_0: double
The saturation induction in `T`.
mask: :class:`~numpy.ndarray` (N=3), optional
A boolean mask which defines the magnetized volume in 3D.
projectors: list of :class:`~.Projector`
A list of all stored :class:`~.Projector` objects.
phase_maps: list of :class:`~.PhaseMap`
A list of all stored :class:`~.PhaseMap` objects.
phase_vec: :class:`~numpy.ndarray` (N=1)
The concatenaded, vectorized phase of all ;class:`~.PhaseMap` objects.
Se_inv : :class:`~numpy.ndarray` (N=2), optional
Inverted covariance matrix of the measurement errors. The matrix has size `NxN` with N
being the length of the targetvector y (vectorized phase map information).
m: int
Size of the image space.
n: int
Size of the input space.
'''
@property
def m(self):
return np.sum([len(p.phase_vec) for p in self.phase_maps])
@property
def phase_vec(self):
return np.concatenate([p.phase_vec for p in self.phase_maps])
@property
def hook_points(self):
result = [0]
for i, phase_map in enumerate(self.phase_maps):
result.append(result[i]+np.prod(phase_map.dim_uv))
return result
@property
def phase_mappers(self):
dim_uv_set = set([p.dim_uv for p in self.projectors])
kernel_list = [Kernel(self.a, dim_uv) for dim_uv in dim_uv_set]
return {kernel.dim_uv: PhaseMapperRDFC(kernel) for kernel in kernel_list}
def __init__(self, a, dim, b_0=1, mask=None, Se_inv=None):
assert isinstance(a, Number), 'Grid spacing has to be a number!'
assert a >= 0, 'Grid spacing has to be a positive number!'
assert isinstance(dim, tuple) and len(dim) == 3, \
'Dimension has to be a tuple of length 3!'
if mask is not None:
assert mask.shape == dim, 'Mask dimensions must match!'
self.n = 3 * np.sum(mask)
else:
self.n = 3 * np.prod(dim)
self.a = a
self.dim = dim
self.b_0 = b_0
self.mask = mask
self.Se_inv = Se_inv
return '%s(a=%r, dim=%r, b_0=%r)' % (self.__class__, self.a, self.dim, self.b_0)
def __str__(self):
return 'DataSet(a=%s, dim=%s, b_0=%s)' % (self.a, self.dim, self.b_0)
def append(self, phase_map, projector):
'''Appends a data pair of phase map and projection infos to the data collection.`
Parameters
----------
phase_map: :class:`~.PhaseMap`
A :class:`~.PhaseMap` object which should be added to the data collection.
projector: :class:`~.Projector`
A :class:`~.Projector` object which should be added to the data collection.
Returns
-------
None
'''
assert isinstance(phase_map, PhaseMap) and isinstance(projector, Projector), \
'Argument has to be a tuple of a PhaseMap and a Projector object!'
assert projector.dim == self.dim, '3D dimensions must match!'
assert phase_map.dim_uv == projector.dim_uv, 'Projection dimensions (dim_uv) must match!'
self.phase_maps.append(phase_map)
self.projectors.append(projector)
def create_phase_maps(self, mag_data):
'''Create a list of phasemaps with the projectors in the dataset for a given
:class:`~.MagData` object.
Parameters
----------
mag_data : :class:`~.MagData`
Magnetic distribution to which the projectors of the dataset should be applied.
Returns
-------
phase_maps : list of :class:`~.phasemap.PhaseMap`
A list of the phase maps resulting from the projections specified in the dataset.
'''
return [self.phase_mappers[projector.dim_uv](projector(mag_data))
for projector in self.projectors]
def set_Se_inv_block_diag(self, cov_list):
'''Set the Se_inv matrix as a block diagonal matrix
Parameters
----------
cov_list: list of :class:`~numpy.ndarray`
List of inverted covariance matrices (one for each projection).
Returns
-------
None
'''
self.Se_inv = sparse.block_diag(cov_list).tocsr()
def set_Se_inv_diag_with_masks(self, mask_list):
'''Set the Se_inv matrix as a block diagonal matrix from a list of masks
Parameters
----------
mask_list: list of :class:`~numpy.ndarray`
List of 2D masks (one for each projection) which define trust regions.
Returns
-------
None
'''
cov_list = [sparse.diags(m.flatten(), 0) for m in mask_list]
self.set_Se_inv_block_diag(cov_list)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
def display_phase(self, mag_data=None, title='Phase Map',
cmap='RdBu', limit=None, norm=None):
'''Display all phasemaps saved in the :class:`~.DataSet` as a colormesh.
Parameters
----------
mag_data : :class:`~.MagData`, optional
Magnetic distribution to which the projectors of the dataset should be applied. If not
given, the phase_maps in the dataset are used.
title : string, optional
The main part of the title of the plots. The default is 'Phase Map'. Additional
projector info is appended to this.
cmap : string, optional
The :class:`~matplotlib.colors.Colormap` which is used for the plots as a string.
The default is 'RdBu'.
limit : float, optional
Plotlimit for the phase in both negative and positive direction (symmetric around 0).
If not specified, the maximum amplitude of the phase is used.
norm : :class:`~matplotlib.colors.Normalize` or subclass, optional
Norm, which is used to determine the colors to encode the phase information.
If not specified, :class:`~matplotlib.colors.Normalize` is automatically used.
Returns
-------
None
'''
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
if mag_data is not None:
phase_maps = self.create_phase_maps(mag_data)
else:
phase_maps = self.phase_maps
[phase_map.display_phase('{} ({})'.format(title, self.projectors[i].get_info()),
cmap, limit, norm)
for (i, phase_map) in enumerate(phase_maps)]
plt.show()
def display_combined(self, mag_data=None, title='Combined Plot', cmap='RdBu', limit=None,
norm=None, gain=1, interpolation='none', grad_encode='bright'):
'''Display all phasemaps and the resulting color coded holography images.
Parameters
----------
mag_data : :class:`~.MagData`, optional
Magnetic distribution to which the projectors of the dataset should be applied. If not
given, the phase_maps in the dataset are used.
title : string, optional
The title of the plot. The default is 'Combined Plot'.
cmap : string, optional
The :class:`~matplotlib.colors.Colormap` which is used for the plot as a string.
The default is 'RdBu'.
limit : float, optional
Plotlimit for the phase in both negative and positive direction (symmetric around 0).
If not specified, the maximum amplitude of the phase is used.
norm : :class:`~matplotlib.colors.Normalize` or subclass, optional
Norm, which is used to determine the colors to encode the phase information.
If not specified, :class:`~matplotlib.colors.Normalize` is automatically used.
gain : float, optional
The gain factor for determining the number of contour lines in the holographic
contour map. The default is 1.
interpolation : {'none, 'bilinear', 'cubic', 'nearest'}, optional
Defines the interpolation method for the holographic contour map.
No interpolation is used in the default case.
grad_encode: {'bright', 'dark', 'color', 'none'}, optional
Encoding mode of the phase gradient. 'none' produces a black-white image, 'color' just
encodes the direction (without gradient strength), 'dark' modulates the gradient
strength with a factor between 0 and 1 and 'bright' (which is the default) encodes
the gradient strength with color saturation.
Returns
-------
None
'''
if mag_data is not None:
phase_maps = self.create_phase_maps(mag_data)
else:
phase_maps = self.phase_maps
[phase_map.display_combined('{} ({})'.format(title, self.projectors[i].get_info()),
cmap, limit, norm, gain, interpolation, grad_encode)
for (i, phase_map) in enumerate(phase_maps)]
plt.show()
# TODO: method for constructing 3D mask from 2D masks?