Skip to content
Snippets Groups Projects
dataset.py 10.5 KiB
Newer Older
Jörn Ungermann's avatar
Jörn Ungermann committed
# -*- coding: utf-8 -*-
# Copyright 2014 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
Jörn Ungermann's avatar
Jörn Ungermann committed
"""This module provides the :class:`~.DataSet` class for the collection of phase maps
and additional data like corresponding projectors."""


import numpy as np
from numbers import Number

Jörn Ungermann's avatar
Jörn Ungermann committed

import matplotlib.pyplot as plt

from pyramid.phasemap import PhaseMap
from pyramid.phasemapper import PhaseMapperRDFC
from pyramid.projector import Projector
from pyramid.kernel import Kernel

import logging


Jan Caron's avatar
Jan Caron committed
__all__ = ['DataSet']


Jörn Ungermann's avatar
Jörn Ungermann committed
class DataSet(object):

    '''Class for collecting phase maps and corresponding projectors.

    Represents a collection of (e.g. experimentally derived) phase maps, stored as
    :class:`~.PhaseMap` objects and corresponding projectors stored as :class:`~.Projector`
    objects. At creation, the grid spacing `a` and the dimension `dim` of the magnetization
    distribution have to be given. Data can be added via the :func:`~.append` method, where
    a :class:`~.PhaseMap`, a :class:`~.Projector` and additional info have to be given.

    Attributes
    ----------
    a: float
        The grid spacing in nm.
    dim: tuple (N=3)
        Dimensions of the 3D magnetization distribution.
    phase_maps:
        A list of all stored :class:`~.PhaseMap` objects.
    b_0: double
        The saturation induction in `T`.
    mask: :class:`~numpy.ndarray` (N=3), optional
        A boolean mask which defines the magnetized volume in 3D.
    projectors: list of :class:`~.Projector`
        A list of all stored :class:`~.Projector` objects.
    phase_maps: list of :class:`~.PhaseMap`
        A list of all stored :class:`~.PhaseMap` objects.
    phase_vec: :class:`~numpy.ndarray` (N=1)
        The concatenaded, vectorized phase of all ;class:`~.PhaseMap` objects.
    Se_inv : :class:`~numpy.ndarray` (N=2), optional
        Inverted covariance matrix of the measurement errors. The matrix has size `NxN` with N
        being the length of the targetvector y (vectorized phase map information).
Jörn Ungermann's avatar
Jörn Ungermann committed
    m: int
        Size of the image space.
    n: int
        Size of the input space.

    '''

Jan Caron's avatar
Jan Caron committed
    _log = logging.getLogger(__name__+'.DataSet')
Jörn Ungermann's avatar
Jörn Ungermann committed

    @property
    def m(self):
        return np.sum([len(p.phase_vec) for p in self.phase_maps])

    @property
    def phase_vec(self):
        return np.concatenate([p.phase_vec for p in self.phase_maps])

    @property
    def hook_points(self):
        result = [0]
        for i, phase_map in enumerate(self.phase_maps):
            result.append(result[i]+np.prod(phase_map.dim_uv))
        return result

    @property
    def phase_mappers(self):
        dim_uv_set = set([p.dim_uv for p in self.projectors])
        kernel_list = [Kernel(self.a, dim_uv) for dim_uv in dim_uv_set]
Jörn Ungermann's avatar
Jörn Ungermann committed
        return {kernel.dim_uv: PhaseMapperRDFC(kernel) for kernel in kernel_list}

    def __init__(self, a, dim, b_0=1, mask=None, Se_inv=None):
Jan Caron's avatar
Jan Caron committed
        self._log.debug('Calling __init__')
Jörn Ungermann's avatar
Jörn Ungermann committed
        assert isinstance(a, Number), 'Grid spacing has to be a number!'
        assert a >= 0, 'Grid spacing has to be a positive number!'
        assert isinstance(dim, tuple) and len(dim) == 3, \
            'Dimension has to be a tuple of length 3!'
        if mask is not None:
            assert mask.shape == dim, 'Mask dimensions must match!'
            self.n = 3 * np.sum(mask)
        else:
            self.n = 3 * np.prod(dim)
        self.a = a
        self.dim = dim
        self.b_0 = b_0
        self.mask = mask
Jörn Ungermann's avatar
Jörn Ungermann committed
        self.phase_maps = []
        self.projectors = []
Jan Caron's avatar
Jan Caron committed
        self._log.debug('Created: '+str(self))
Jörn Ungermann's avatar
Jörn Ungermann committed

    def __repr__(self):
Jan Caron's avatar
Jan Caron committed
        self._log.debug('Calling __repr__')
Jörn Ungermann's avatar
Jörn Ungermann committed
        return '%s(a=%r, dim=%r, b_0=%r)' % (self.__class__, self.a, self.dim, self.b_0)

    def __str__(self):
Jan Caron's avatar
Jan Caron committed
        self._log.debug('Calling __str__')
Jörn Ungermann's avatar
Jörn Ungermann committed
        return 'DataSet(a=%s, dim=%s, b_0=%s)' % (self.a, self.dim, self.b_0)

    def append(self, phase_map, projector):
Jörn Ungermann's avatar
Jörn Ungermann committed
        '''Appends a data pair of phase map and projection infos to the data collection.`

        Parameters
        ----------
        phase_map: :class:`~.PhaseMap`
            A :class:`~.PhaseMap` object which should be added to the data collection.
        projector: :class:`~.Projector`
            A :class:`~.Projector` object which should be added to the data collection.

        Returns
        -------
        None

        '''
Jan Caron's avatar
Jan Caron committed
        self._log.debug('Calling append')
Jörn Ungermann's avatar
Jörn Ungermann committed
        assert isinstance(phase_map, PhaseMap) and isinstance(projector, Projector),  \
            'Argument has to be a tuple of a PhaseMap and a Projector object!'
        assert projector.dim == self.dim, '3D dimensions must match!'
        assert phase_map.dim_uv == projector.dim_uv, 'Projection dimensions (dim_uv) must match!'
        self.phase_maps.append(phase_map)
        self.projectors.append(projector)

    def create_phase_maps(self, mag_data):
        '''Create a list of phasemaps with the projectors in the dataset for a given
        :class:`~.MagData` object.

        Parameters
        ----------
        mag_data : :class:`~.MagData`
            Magnetic distribution to which the projectors of the dataset should be applied.

        Returns
        -------
        phase_maps : list of :class:`~.phasemap.PhaseMap`
            A list of the phase maps resulting from the projections specified in the dataset.

        '''
        return [self.phase_mappers[projector.dim_uv](projector(mag_data))
                for projector in self.projectors]

    def set_Se_inv_block_diag(self, cov_list):
        '''Set the Se_inv matrix as a block diagonal matrix

        Parameters
        ----------
        cov_list: list of :class:`~numpy.ndarray`
            List of inverted covariance matrices (one for each projection).

        Returns
        -------
            None

        '''
        self.Se_inv = sparse.block_diag(cov_list).tocsr()

    def set_Se_inv_diag_with_masks(self, mask_list):
        '''Set the Se_inv matrix as a block diagonal matrix from a list of masks

        Parameters
        ----------
        mask_list: list of :class:`~numpy.ndarray`
            List of 2D masks (one for each projection) which define trust regions.

        Returns
        -------
            None

        '''
        cov_list = [sparse.diags(m.flatten(), 0) for m in mask_list]
        self.set_Se_inv_block_diag(cov_list)

Jörn Ungermann's avatar
Jörn Ungermann committed
    def display_phase(self, mag_data=None, title='Phase Map',
                      cmap='RdBu', limit=None, norm=None):
        '''Display all phasemaps saved in the :class:`~.DataSet` as a colormesh.

        Parameters
        ----------
        mag_data : :class:`~.MagData`, optional
            Magnetic distribution to which the projectors of the dataset should be applied. If not
            given, the phase_maps in the dataset are used.
        title : string, optional
            The main part of the title of the plots. The default is 'Phase Map'. Additional
            projector info is appended to this.
        cmap : string, optional
            The :class:`~matplotlib.colors.Colormap` which is used for the plots as a string.
            The default is 'RdBu'.
        limit : float, optional
            Plotlimit for the phase in both negative and positive direction (symmetric around 0).
            If not specified, the maximum amplitude of the phase is used.
        norm : :class:`~matplotlib.colors.Normalize` or subclass, optional
            Norm, which is used to determine the colors to encode the phase information.
            If not specified, :class:`~matplotlib.colors.Normalize` is automatically used.

        Returns
        -------
        None

        '''
Jan Caron's avatar
Jan Caron committed
        self._log.debug('Calling display')
Jörn Ungermann's avatar
Jörn Ungermann committed
        if mag_data is not None:
            phase_maps = self.create_phase_maps(mag_data)
        else:
            phase_maps = self.phase_maps
        [phase_map.display_phase('{} ({})'.format(title, self.projectors[i].get_info()),
                                 cmap, limit, norm)
            for (i, phase_map) in enumerate(phase_maps)]
        plt.show()

    def display_combined(self, mag_data=None, title='Combined Plot', cmap='RdBu', limit=None,
                         norm=None, gain=1, interpolation='none', grad_encode='bright'):
        '''Display all phasemaps and the resulting color coded holography images.

        Parameters
        ----------
        mag_data : :class:`~.MagData`, optional
            Magnetic distribution to which the projectors of the dataset should be applied. If not
            given, the phase_maps in the dataset are used.
        title : string, optional
            The title of the plot. The default is 'Combined Plot'.
        cmap : string, optional
            The :class:`~matplotlib.colors.Colormap` which is used for the plot as a string.
            The default is 'RdBu'.
        limit : float, optional
            Plotlimit for the phase in both negative and positive direction (symmetric around 0).
            If not specified, the maximum amplitude of the phase is used.
        norm : :class:`~matplotlib.colors.Normalize` or subclass, optional
            Norm, which is used to determine the colors to encode the phase information.
            If not specified, :class:`~matplotlib.colors.Normalize` is automatically used.
        gain : float, optional
            The gain factor for determining the number of contour lines in the holographic
            contour map. The default is 1.
        interpolation : {'none, 'bilinear', 'cubic', 'nearest'}, optional
            Defines the interpolation method for the holographic contour map.
            No interpolation is used in the default case.
        grad_encode: {'bright', 'dark', 'color', 'none'}, optional
            Encoding mode of the phase gradient. 'none' produces a black-white image, 'color' just
            encodes the direction (without gradient strength), 'dark' modulates the gradient
            strength with a factor between 0 and 1 and 'bright' (which is the default) encodes
            the gradient strength with color saturation.

        Returns
        -------
        None

        '''
Jan Caron's avatar
Jan Caron committed
        self._log.debug('Calling display_combined')
Jörn Ungermann's avatar
Jörn Ungermann committed
        if mag_data is not None:
            phase_maps = self.create_phase_maps(mag_data)
        else:
            phase_maps = self.phase_maps
        [phase_map.display_combined('{} ({})'.format(title, self.projectors[i].get_info()),
                                    cmap, limit, norm, gain, interpolation, grad_encode)
            for (i, phase_map) in enumerate(phase_maps)]
        plt.show()


# TODO: method for constructing 3D mask from 2D masks?