Skip to content
Snippets Groups Projects
Commit 7f1f5c68 authored by Johannes Wasmer's avatar Johannes Wasmer
Browse files

presentation version (TeX)

parent a226a0f5
No related branches found
No related tags found
No related merge requests found
......@@ -11,7 +11,7 @@
% KKR theory slide from mavropoulous dft20 kkr lecture; backup slides
{
\setbeamercolor{background canvas}{bg=}
\includepdf[pages={15,17,19,27-28,30-31}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf}
\includepdf[pages={15,17,19,27-28,29,31}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf}
}
......
......@@ -3,7 +3,7 @@
% \frametitle{Slides metadata}
\begin{center}
Talk held at hzdr-casus group meeting for ongoing collaboration project via
Talk held at HZDR-CASUS \href{https://sites.google.com/view/mlmd}{MLMD} group meeting for ongoing collaboration project via
HIDA Trainee Network.
\vspace*{2em}
......
......@@ -48,6 +48,76 @@
\end{columns}
\end{frame}
% Slide funding % Section introduction
\begin{frame}[c,plain]
\frametitle{My funding}
% \framesubtitle{HIDA, HDSLEE, AIDAS, DAEMON}
\vspace*{0em}
\begin{columns}[c]
\begin{column}{0.3\linewidth}
\textbf{\color{fzjblue}{This research visit}}
{\small HIDA Trainee Network}
\vspace*{1em}
\begin{center}
\hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hida/HiDA_Logo_RGB_kompakt-cropped.png}\vspace*{1em}
% \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Solo_RGB_cropped.pdf}\vspace*{1em}
% \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Text_RGB_cropped.pdf}
\end{center}
\vspace*{1em}\hrule{}\vspace*{2em}
\textbf{\color{fzjblue}{My PhD}}
{\small HIDA Grad School HDSLEE \&}
{\small EU Joint Virtual Lab}
\vspace*{1em}
\includegraphics[width=0.8\textwidth]{../resources/fig/logos/aidas/AIDAS-72dpi-no-bg.png}%
% {\color{fzjblue}{on Artificial Intelligence, Data Analytics and Scalable Simulation}}
\end{column}
\vrule{}\hspace*{2em}
\begin{column}{0.6\linewidth}
% left side. DAEMON Network
\begin{columns}[c]
\begin{column}{0.35\linewidth}
\vspace*{3em}
\begin{center}
% \includegraphics[width=0.7\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2023-09-05.png}%
\includegraphics[width=1.0\textwidth]{../resources/fig/cost-daemon/daemon-working-groups-circle.png}%
\vspace*{1em}
Join via \\\large{\href{https://cost-daemon.eu/}{cost-daemon.eu}}
\end{center}
\end{column}
\begin{column}{0.6\linewidth}
\begin{center}
\includegraphics[width=0.45\textwidth]{../resources/fig/logos/cost-daemon/cost-daemon-logo-2025.png}%
\hspace*{1em}
\includegraphics[width=0.3\textwidth]{../resources/fig/logos/cost-eu/cost-eu-logo-no-bg.png}%
\end{center}
\emph{European network for data-driven materials science}\vspace*{1em}
{\footnotesize
\begin{itemize}
% \setlength\itemsep{1em}
\item[\textbf{\faPlay{} WG1:}] Community standards: data, workflows and codes for materials design.
\item[\textbf{\faPlay{} WG2:}] Representations and algorithms for materials design for “single-modality” use.
\item[\textbf{WG3:}] Multi-modal machine learning methods for advanced materials design.
\item[\textbf{WG4:}] Process-structure-property relationships in materials. Novel insights and applications.
\item[\textbf{WG5:}] Training, Dissemination, Exploitation, Outreach
\end{itemize}
}
\end{column}
\end{columns}
\end{column}
\end{columns}
\end{frame}
% Slide my research group % Section introduction
......@@ -155,83 +225,25 @@
\end{columns}
\vspace*{0em}
{\large \faGithub{} \href{https://github.com/JuDFTteam}{JuDFTteam}}
{\large \href{http://judft.de}{judft.de} \quad \textbf{//} \quad \faGithub{} \href{https://github.com/JuDFTteam}{JuDFTteam}}
% {\large \faGithub{} \href{https://github.com/JuDFTteam}{JuDFTteam}}
\end{center}
\end{frame}
% Slide funding % Section introduction
% Slide all-electron DFT % Section phd-project
\begin{frame}[c,plain]
\frametitle{My funding}
% \framesubtitle{HIDA, HDSLEE, AIDAS, DAEMON}
\vspace*{0em}
\begin{columns}[c]
\begin{column}{0.3\linewidth}
\textbf{\color{fzjblue}{This research visit}}
{\small HIDA Trainee Network}
\vspace*{1em}
\begin{center}
\hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hida/HiDA_Logo_RGB_kompakt-cropped.png}\vspace*{1em}
% \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Solo_RGB_cropped.pdf}\vspace*{1em}
% \hspace*{-2em}\includegraphics[width=0.8\textwidth]{../resources/fig/logos/hds-lee/adapted/HDS_LEE_Logo_Text_RGB_cropped.pdf}
\end{center}
\vspace*{1em}\hrule{}\vspace*{2em}
\textbf{\color{fzjblue}{My PhD}}
{\small HIDA Grad School HDSLEE \&}
{\small EU Joint Virtual Lab}
\vspace*{1em}
\frametitle{JuDFT codes accuracy}
% frametitle notes: PhD project flowchart
\includegraphics[width=0.8\textwidth]{../resources/fig/logos/aidas/AIDAS-72dpi-no-bg.png}%
% {\color{fzjblue}{on Artificial Intelligence, Data Analytics and Scalable Simulation}}
FLEUR and JuKKR are all-electron, full-potential open-source codes.
\vspace*{0em}
\end{column}
\vrule{}\hspace*{2em}
\begin{column}{0.6\linewidth}
% left side. DAEMON Network
\begin{columns}[c]
\begin{column}{0.35\linewidth}
\vspace*{3em}
\begin{center}
% \includegraphics[width=0.7\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2023-09-05.png}%
\includegraphics[width=1.0\textwidth]{../resources/fig/cost-daemon/daemon-working-groups-circle.png}%
\vspace*{1em}
Join via \\\large{\href{https://cost-daemon.eu/}{cost-daemon.eu}}
\end{center}
\end{column}
\includegraphics[width=0.8\textwidth]{../resources/fig/external/papers/bosoniHowVerifyPrecision2024/fig4-clip1.pdf}\footcite{bosoniHowVerifyPrecision2024}
\begin{column}{0.6\linewidth}
\begin{center}
\includegraphics[width=0.45\textwidth]{../resources/fig/logos/cost-daemon/cost-daemon-logo-2025.png}%
\hspace*{1em}
\includegraphics[width=0.3\textwidth]{../resources/fig/logos/cost-eu/cost-eu-logo-no-bg.png}%
\end{center}
\emph{European network for data-driven materials science}\vspace*{1em}
{\footnotesize
\begin{itemize}
% \setlength\itemsep{1em}
\item[\textbf{\faPlay{} WG1:}] Community standards: data, workflows and codes for materials design.
\item[\textbf{\faPlay{} WG2:}] Representations and algorithms for materials design for “single-modality” use.
\item[\textbf{WG3:}] Multi-modal machine learning methods for advanced materials design.
\item[\textbf{WG4:}] Process-structure-property relationships in materials. Novel insights and applications.
\item[\textbf{WG5:}] Training, Dissemination, Exploitation, Outreach
\end{itemize}
}
\end{column}
\end{columns}
\end{column}
\end{columns}
\vspace*{0em}
\end{frame}
% Slide AiiDA engine % Section introduction
\begin{frame}[plain,c]
% \frametitle{{\small AiiDA}}
......@@ -281,45 +293,6 @@
\end{frame}
% Slide PhD project flowchart % Section phd-project
\begin{frame}
\frametitle{My PhD project}
% frametitle notes: PhD project flowchart
\framesubtitle{\href{https://go.fzj.de/wasmer}{go.fzj.de/wasmer}}
\vspace*{0em}
\includegraphics[width=1.0\textwidth]{../resources/fig/presentation-2023-02/atomistic-ml/classification-of-atomistic-ml_presentation-2023-02_02-emph-both_ktikz.pdf}
\vspace*{2em}
\begin{columns}[t]
\hspace{1em}
\begin{column}{0.6\linewidth}
\begin{center}
Electronic structure emulator
for fast SCF convergence
\end{center}
\end{column}
\vrule{}
\hspace{1em}
\begin{column}{0.39\linewidth}
\begin{center}
Magnetic property prediction
for spin dynamics simulation
\end{center}
\end{column}
\end{columns}
\end{frame}
% Slide MTIs (magnetic topological insulators) % Section co-doping
{
\setbeamercolor{background canvas}{bg=}
\includepdf[pages=1]{../resources/fig/presentation-2023-03/ruess/ruess-TIs.pdf}
}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "../presentation"
......
\section{Machine learning exchange interactions}
\label{sec:ml-exc-inter}
% Slide PhD project flowchart % Section phd-project
\begin{frame}
\frametitle{Vision: Electronic structure learning}
% frametitle notes: PhD project flowchart
\framesubtitle{as integrated, high-level multiscale workflows}
\vspace*{0em}
\includegraphics[width=1.0\textwidth]{../resources/fig/presentation-2023-02/atomistic-ml/classification-of-atomistic-ml_presentation-2023-02_02-emph-both_ktikz.pdf}
\vspace*{2em}
\begin{columns}[t]
\hspace{1em}
\begin{column}{0.6\linewidth}
\begin{center}
Better \enquote{initial guess}
for fast SCF convergence
\end{center}
\end{column}
\vrule{}
\hspace{1em}
\begin{column}{0.39\linewidth}
\begin{center}
Magnetic property prediction
(ML-Exc) for spin dynamics
\end{center}
\end{column}
\end{columns}
\end{frame}
% Slide MTIs (magnetic topological insulators) % Section co-doping
{
\setbeamercolor{background canvas}{bg=}
\includepdf[pages=1]{../resources/fig/presentation-2023-03/ruess/ruess-TIs.pdf}
}
% Slide study design % Section co-doping
\begin{frame}[plain,c]
\frametitle{Project \enquote{ML-Exc}}
\framesubtitle{Magnetic co-doping of topological insulators}
\hspace*{1em} \ce{Bi2Te3} \hspace*{3em} Dimer clusters of \(3d\), \(4d\) transition
metal defects\vspace*{-1em}
\begin{columns}[c]
\hspace*{1em}
\begin{column}{0.6\textwidth}
\begin{center}
\includegraphics[width=0.35\textheight]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/Fig1-a.pdf}%
\hspace*{-0.5em}
\includegraphics[width=0.80\textwidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA3-extract-6.pdf}%
\end{center}
\end{column}
\hspace*{3em}
\begin{column}{0.4\textwidth}
{\small
Single-impurity dabase, N=2'000.
\href{https://go.fzj.de/judit}{go.fzj.de/judit}\vspace*{1em}
Dimer database, N=2'000\footcite{mozumderHighthroughputMagneticCodoping2024}.\vspace*{3em}
Co-doping can help to control
\begin{itemize}
\item critical \(T_c\) of QAHE
\item exchange splitting \(\Delta_{xc}\)
\item long-range magnetic ordering
\end{itemize}\vspace*{1em}
for applications in spintronics and
fault-tolerant quantum computing.
}
\end{column}
\end{columns}
\end{frame}
% Slide AiiDA-KKR workflows % Section co-doping
\begin{frame}[plain,c]
\frametitle{Project \enquote{ML-Exc}}
\framesubtitle{\logoAiida{}-KKR workflows\footcite{russmannAiiDAKKRPluginIts2021}}
\vspace*{-1em}
\begin{columns}[t]
\hspace*{-2em}
\begin{column}{0.3\linewidth}
% {\footnotesize Single impurity}
\begin{center}
\includegraphics[width=0.8\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}
\end{center}
\end{column}
\begin{column}{0.5\linewidth}
\hspace*{-3em}
\begin{center}
% {\footnotesize \(N+1\) impurities}
\includegraphics[width=0.8\linewidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA2-no-subfigure-labels.pdf}%
\end{center}
\end{column}
\end{columns}
\vspace*{-0em}
\begin{flushright}
Extended Heisenberg Hamiltonian.
\(H = -\frac{1}{2}\sum_{i,j}J_{ij} \, \vec{S}_i \cdot \vec{S}_j
-\frac{1}{2}\sum_{i,j}\vec{D}_{ij} \cdot \left( \vec{S}_i \times \vec{S}_j \right)
\)
Exchange constants from method of infinitesimal rotations\footcite{liechtensteinLocalSpinDensity1987}.
\( % Liechtenstein infinitesimal roation Jij from KKR-GF
\mathcal{J}_{ij} = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E_F}
\mathrm{d} E \operatorname{Tr}[\delta t_i G_{ij} \delta t_j G_{ji}]
\)
\end{flushright}
\end{frame}
% Slide results Jijs 1 % Section co-doping
{
\setbeamercolor{background canvas}{bg=}
\includepdf[pages=1]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/originals/Fig4.pdf}
}
% Slide AiiDA-Spirit workflows % Section jij-prediction
\begin{frame}[plain,c]
\frametitle{Spin dynamics with \logoAiida{}-\raisebox{-0.4em}{\logoSpiritWithText{}}\footcite{russmannAiiDASpiritPluginAutomated2022}}
\vspace*{-2em}
\begin{columns}[t]
\begin{column}{0.4\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth]{../resources/fig/external/papers/mozumderHighthroughputMagneticCodoping2024/processed/FigA2-no-subfigure-labels.pdf}%
% \includegraphics[width=1.0\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}\footcite{russmannAiiDAKKRPluginIts2021}
\vspace*{1em}
Liechtenstein formula
\[
\mathcal{J}_{ij} = -\frac{1}{\pi} \operatorname{Im} \int_{-\infty}^{E_F}
\mathrm{d} E \operatorname{Tr}[\delta t_i G_{ij} \delta t_j G_{ji}]
\]
ML-IAP approach. \(E_k = \sum_k E_k \longrightarrow J_{ij} =
\sum_k \left( J_{ij} \right)_k\)
\end{center}
\end{column}
\begin{column}{0.55\linewidth}
\begin{center}
\includegraphics[width=1.0\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-spirit-paper-workflow.pdf}%
Landau-Lifshitz-Gilbert equation
\[
\frac{\partial \vec{S}_i}{\partial t}=-\gamma^{\prime} \vec{S}_i \times \vec{B}_i^{\text {eff }}-\lambda \vec{S}_i \times\left(\vec{S}_i \times \vec{B}_i^{\text {eff }}\right)
\]
% \vspace*{2em}
\normalsize{\href{https://juspin.de}{juspin.de}}
\end{center}
\end{column}
\end{columns}
\end{frame}
% Slide project design % Section jij-prediction
\begin{frame}[plain,c]
\frametitle{Project \enquote{ML-Exc}}
\framesubtitle{Model selection}
\begin{table}[H]
\resizebox{\columnwidth}{!}{%
\centering
\input{../resources/table/jij-prediction-model-selection}%
% \caption[short caption]{Long caption.}
% \label{tab:model-selection}
}
\end{table}
\end{frame}
% Slide exc-int tensor prediction % Section jij-prediction
\begin{frame}
\frametitle{Project \enquote{ML-Exc}}
\framesubtitle{Tensorial interaction}
Heisenberg Hamiltonian in tensor form.
\[\mathcal{H}_H=-\sum_{j>i} \vec{m}_i \cdot \mathcal{J}_{i j} \vec{m}_j\]
Tensor components: isotropic, anti-symmetric (DMI) and anisotropic or
traceless symmetric part (neglected so far).
\[\mathcal{J}_{i j}=J_{i j} \mathbb{1} + \mathcal{J}_{i j}^A+\mathcal{J}_{i
j}^S\]
with \(J_{i j}^{x x}=J_{i j}^{y y}=J_{i j}^{z z}=\frac{1}{3} J_{i j}\) and
\[\mathcal{J}_{i j}^A=\left[\begin{array}{ccc}
0 & J_{i j}^{x y} & J_{i j}^{x z} \\
J_{i j}^{y x} & 0 & J_{i j}^{y z} \\
J_{i j}^{z x} & J_{i j}^{z y} & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & J_{i j}^{x y} & -J_{i j}^{z x} \\
-J_{i j}^{x y} & 0 & J_{i j}^{y z} \\
J_{i j}^{z x} & -J_{i j}^{y z} & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & -D_{i j}^z & D_{i j}^y \\
D_{i j}^z & 0 & -D_{i j}^x \\
-D_{i j}^y & D_{i j}^x & 0
\end{array}\right]\]
\end{frame}
% Slide higher-order exchange interactions
{
\setbeamercolor{background canvas}{bg=}
\includepdf[pages=1]{../resources/fig/external/presentations/spinqx23/hkatsumoto/spinqx23-hkatsumoto-page24.pdf}
}
% Slide relativistic exchange interactions
{
\setbeamercolor{background canvas}{bg=}
\includepdf[pages=1]{../resources/fig/external/presentations/spinqx23/hkatsumoto/spinqx23-hkatsumoto-page25.pdf}
}
% Slide best-of-aml % Section odds-and-ends
\begin{frame}[plain,c]
\frametitle{Community resources}
\framesubtitle{Best of atomistic machine learning}
\vspace*{-4em}
\begin{columns}[c]
\begin{column}{0.5\linewidth}
\vspace*{3em}
\begin{center}
% \includegraphics[width=0.7\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2023-09-05.png}%
\includegraphics[width=0.9\textwidth]{../resources/fig/github/best-of-aml-thumbnail-2024-07-08.png}%
Largest list of atomistic ML tools on the web (400+), auto-ranked,
regular updates\footcite{wasmerBestAtomisticMachine2023}
\vspace*{2em}
\Large{\href{https://go.fzj.de/best-of-aml}{go.fzj.de/baml}}
\end{center}
\end{column}
\begin{column}{0.4\linewidth}
\includegraphics[width=0.85\textwidth]{../resources/fig/github/best-of-aml-contents-2024-07-08.png}%
\end{column}
\end{columns}
\end{frame}
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "../presentation"
%%% mode: flyspell
%%% ispell-local-dictionary: "english"
%%% End:
\section{KKR-JLCDM}
\section{Better initial guess}
\label{sec:kkr-jlcdm}
% Slide outlook vimp-prediction % Section odds-and-ends
% Slide PhD project flowchart % Section phd-project
\begin{frame}
\frametitle{Vision: Electronic structure learning}
% frametitle notes: PhD project flowchart
\framesubtitle{as integrated, high-level multiscale workflows}
\vspace*{0em}
\includegraphics[width=1.0\textwidth]{../resources/fig/presentation-2023-02/atomistic-ml/classification-of-atomistic-ml_presentation-2023-02_02-emph-both_ktikz.pdf}
\vspace*{2em}
\begin{columns}[t]
\hspace{1em}
\begin{column}{0.6\linewidth}
\begin{center}
Better \enquote{initial guess}
for fast SCF convergence
\end{center}
\end{column}
\vrule{}
\hspace{1em}
\begin{column}{0.39\linewidth}
\begin{center}
Magnetic property prediction
(ML-Exc) for spin dynamics
\end{center}
\end{column}
\end{columns}
\end{frame}
% Slide AiiDA-KKR workflows % kkr-theory
\begin{frame}[plain,c]
\frametitle{Project \enquote{Better initial guess}}
\framesubtitle{\logoAiida{}-KKR workflows}
\vspace*{0em}
\begin{columns}[t]
\vspace*{-1em}
\begin{column}{0.3\linewidth}
% {\footnotesize Single impurity}
\begin{center}
\includegraphics[width=0.95\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}\footcite{russmannAiiDAKKRPluginIts2021}
\end{center}
\end{column}
\begin{column}{0.5\linewidth}
\vspace*{-2em}
\begin{center}
\includegraphics[width=0.75\textheight]{../resources/fig/aiida-kkr/graph//kkr_imp_wc.pdf}%
\end{center}
% \framezoom<1><2>(3.5cm,0.5cm)(4.5cm,3.25cm) % upper part, kkr_scf workflow
% \framezoom<1><3>(4.5cm,3.5cm)(4.5cm,5.25cm) % lower part, kkr_imp workflow
\end{column}
\end{columns}
\vspace*{-0em}
\end{frame}
% Slide dataset generation (single-impurity-database)
\begin{frame}[plain]
\frametitle{Electronic structure emulator}
\frametitle{Project \enquote{Better initial guess}}
\framesubtitle{Data generation}
% frametitle notes: Vimp-prediction qnd
\begin{columns}[c]
\begin{column}{0.45\linewidth}
{\small
\textbf{Task} Predict electron potential difference \(\Delta
V_{imp}(\vec{r})\) \& use as initial guess for \logoAiida -KKR\logoKKRimpCircled{}\vspace{0.5em}
\textbf{Data} 10'000 single impurity in elemental crystal combinations
(\(60 \times 40\) elements) from DFT\vspace{0.5em}
\textbf{Challenges}
\begin{itemize}
\item[\textcolor{fzjblue}{\faFlag}] \textbf{Collaboration} Adapt the linear Jacobi-Legendre Charge Density
Model (JLCDM)\footcite{focassioLinearJacobiLegendreExpansion2023a} to
all-electron DFT
\item Large chemical feature space
\item From radial to full equivariant potential
\item Intermediate SCF results
\item Should be code-agnostic
\item From collinear to noco magnetism
\end{itemize}\vspace{0.5em}
\textbf{Data} 10'000 impurity embeddings into elemental crystals\vspace{0.5em}
\textbf{Target} Electron potential difference \(\Delta
V_{imp}(\vec{r})\) \vspace{0.5em}
}
\includegraphics[width=1.0\linewidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_scale-factor_count_linscale_annot.pdf}%
\begin{center}
{\footnotesize \textcolor{fzjgray50}{Dataset map. Rows: Element of host crystal,
columns: impurity atom, color: num. calculations.}}
\end{center}
\end{column}
\begin{column}{0.55\linewidth}
\vspace*{-2em}
\begin{columns}
\begin{column}{0.25\linewidth}
\hspace*{2.0em}
......@@ -57,22 +110,47 @@
{\footnotesize \textcolor{fzjgray50}{Spherical impurity potentials in first Voronoi cell of \ce{Hg}:\ce{X}
embeddings,\\left upper to bottom right: \(V\), \(V\!-\!V^0\), \(|V|\), \(|V\!-\!V^0|\).}}
\end{center}
% \includegraphics[width=0.8\linewidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_scale-factor_count_linscale.pdf}%
\end{column}
\end{columns}
\end{frame}
\begin{frame}[plain]
% \frametitle{Dataset analysis}
% \framesubtitle{}
\emph{Single-impurity database} \(\boldsymbol{\vert}\) Charge doping
\vspace{-1em}
\begin{center}
\includegraphics[width=0.88\textwidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_charge-neutrality-imp_linscale.pdf}%
\end{center}
% Slide Jacobi-Legendre framework
\begin{frame}[plain,c]
\frametitle{The Jacobi-Legendre framework\footcite{dominaJacobiLegendreFrameworkMachine2024}}
\framesubtitle{for electronic structure representation}
\vspace*{0em}
\begin{columns}[c]
\begin{column}{0.68\linewidth}
\begin{center}
% \includegraphics[width=1.0\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig5.1-with-polynomials.png}%
\includegraphics[width=0.9\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/originals/fig4.1.pdf}%
\vspace*{0.0em}
\includegraphics[width=0.9\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig-5.1-first-row-only.png}%
\end{center}
\end{column}
\vrule{} % vertical separator line
\hspace*{1em}
\begin{column}{0.32\linewidth}
\vspace*{0em}
\includegraphics[width=0.75\linewidth]{../resources/fig/external/papers/dominaJacobiLegendreFrameworkMachine2024/processed/fig6.2-300dpi-narrower-1.png}%
\end{column}
\end{columns}
\vspace*{0em}
\end{frame}
% \begin{frame}[plain]
% % \frametitle{Dataset analysis}
% % \framesubtitle{}
% \emph{Single-impurity database} \(\boldsymbol{\vert}\) Charge doping
% \vspace{-1em}
% \begin{center}
% \includegraphics[width=0.88\textwidth]{../resources/fig/aiida-kkr-ml/da/conv_heatmap_charge-neutrality-imp_linscale.pdf}%
% \end{center}
% \end{frame}
\begin{frame}[plain]
\frametitle{Atom-based JLCDM}
......
......@@ -16,33 +16,9 @@
% KKR theory slide from mavropoulous dft20 kkr lecture
{
\setbeamercolor{background canvas}{bg=}
\includepdf[pages={5-8,10-14,18,21-22}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf}
\includepdf[pages={5-8,10-14,18,21-22,24,30}]{../resources/fig/external/presentations/rwth-dft20/lecture-20-kkr/Lecture20_KKRGF-Method.pdf}
}
% Slide AiiDA-KKR workflows % kkr-theory
\begin{frame}[plain,c]
% \frametitle{\logoAiida{}-KKR workflows\footcite{russmannAiiDAKKRPluginIts2021}}
\frametitle{\logoAiida{}-KKR workflows}
\vspace*{0em}
\begin{columns}[t]
\vspace*{-1em}
\begin{column}{0.3\linewidth}
% {\footnotesize Single impurity}
\begin{center}
\includegraphics[width=0.95\linewidth]{../resources/fig/presentation-2023-03/ruess/ruess-aiida-kkr-paper-workflow-c.pdf}\footcite{russmannAiiDAKKRPluginIts2021}
\end{center}
\end{column}
\begin{column}{0.5\linewidth}
\vspace*{-2em}
\begin{center}
\includegraphics[width=0.8\textheight]{../resources/fig/aiida-kkr/graph//kkr_imp_wc.pdf}%
\end{center}
% \framezoom<1><2>(3.5cm,0.5cm)(4.5cm,3.25cm) % upper part, kkr_scf workflow
% \framezoom<1><3>(4.5cm,3.5cm)(4.5cm,5.25cm) % lower part, kkr_imp workflow
\end{column}
\end{columns}
\vspace*{-0em}
\end{frame}
%%% Local Variables:
......
......@@ -180,6 +180,7 @@
\input{mainmatter/introduction}
\input{mainmatter/kkr-theory}
\input{mainmatter/kkr-jlcdm}
\input{mainmatter/jij-prediction}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% BACKMATTER
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment