Skip to content
Snippets Groups Projects
Commit 056b131f authored by Jan Caron's avatar Jan Caron
Browse files

Minor formatting

parent 09c9f502
No related branches found
No related tags found
No related merge requests found
......@@ -117,7 +117,7 @@ def optimize_linear(data, regularisator=None, maxiter=1000, verbosity=0):
# Set up necessary objects:
cost = Costfunction(data, regularisator)
print cost(np.zeros(cost.n))
x_opt = jutil.cg.conj_grad_minimize(cost, max_iter=20)
x_opt = cg.conj_grad_minimize(cost, max_iter=20)
print cost(x_opt)
# Create and return fitting MagData object:
mag_opt = MagData(data.a, np.zeros((3,)+data.dim))
......@@ -164,18 +164,19 @@ def optimize_nonlin(data, first_guess=None, regularisator=None):
# print jac1, jac2.T, abs(jac1-jac2.T).sum()
# print jac1.shape, jac2.shape
# jac1 = np.array([fwd_model.jac_dot(x_0, np.eye(fwd_model.m)[:, i]) for i in range(fwd_model.m)])
# jac2 = np.array([fwd_model.jac_T_dot(x_0, np.eye(fwd_model.n)[:, i]) for i in range(fwd_model.n)])
# print proj_jac1.dot(pm_jac1)
# print (pm_jac2.dot(proj_jac2)).T
# print jac1
# jac1 = np.array([fwd_model.jac_dot(x_0, np.eye(fwd_model.m)[:, i])
# for i in range(fwd_model.m)])
# jac2 = np.array([fwd_model.jac_T_dot(x_0, np.eye(fwd_model.n)[:, i])
# for i in range(fwd_model.n)])
# print proj_jac1.dot(pm_jac1)
# print (pm_jac2.dot(proj_jac2)).T
# print jac1
# print jac2.T
# print abs(jac1-jac2.T).sum()
# print jac1.shape, jac2.shape
assert len(x_0) == cost.n, (len(x_0), cost.m, cost.n)
result = jutil.minimizer.minimize(cost, x_0, options={"conv_rel":1e-2}, tol={"max_iteration":4})
result = minimizer.minimize(cost, x_0, options={"conv_rel": 1e-2}, tol={"max_iteration": 4})
x_opt = result.x
print cost(x_opt)
mag_opt = MagData(data.a, np.zeros((3,)+data.dim))
......
......@@ -38,7 +38,7 @@ inter = 'none'
dim = (1,) + (64, 64)
dim_small = (64, 64)
smoothed_pictures = True
lam = 1E-4
lam = 1E-6
order = 1
log = True
PATH = '../../output/joern/'
......@@ -65,7 +65,8 @@ mag_data_rec = rc.optimize_linear(data_set, regularisator=regularisator)
print 'reconstruction time:', clock() - tic
# Display the reconstructed phase map and holography image:
phase_map_rec = pm(mag_data_rec)
phase_map_rec.display_combined('Reconstr. Distribution', gain=gain, interpolation=inter, show=False)
phase_map_rec.display_combined('Reconstr. Distribution', gain=gain,
interpolation=inter, show=False)
plt.savefig(dirname + "/reconstr.png")
# Plot the magnetization:
......@@ -82,14 +83,16 @@ plt.savefig(dirname + "/difference.png")
# Get the average difference from the experimental results:
print 'Average difference:', np.average(phase_diff.phase)
# Plot holographic contour maps with overlayed magnetic distributions:
axis = phase_map_rec.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter, show=False)
axis = phase_map_rec.display_holo('Magnetization Overlay', gain=0.1,
interpolation=inter, show=False)
mag_data_rec.quiver_plot(axis=axis, show=False)
axis = plt.gca()
axis.set_xlim(20, 45)
axis.set_ylim(20, 45)
plt.savefig(dirname + "/overlay_normal.png")
axis = phase_map_rec.display_holo('Magnetization Overlay', gain=0.1, interpolation=inter, show=False)
axis = phase_map_rec.display_holo('Magnetization Overlay', gain=0.1,
interpolation=inter, show=False)
mag_data_rec.quiver_plot(axis=axis, log=log, show=False)
axis = plt.gca()
axis.set_xlim(20, 45)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment