Skip to content
Snippets Groups Projects
Commit c19f84c1 authored by Jörn Ungermann's avatar Jörn Ungermann
Browse files

Added a steppest descent minimizer for lp problems and added an experimental...

Added a steppest descent minimizer for lp problems and added an experimental split-bregman optimizer.
parent 69879fe6
No related branches found
No related tags found
No related merge requests found
...@@ -83,7 +83,7 @@ class PrintIterator(object): ...@@ -83,7 +83,7 @@ class PrintIterator(object):
return self.iteration return self.iteration
def optimize_linear(data, regularisator=None, maxiter=1000, verbosity=0): def optimize_linear(data, regularisator=None, max_iter=None):
'''Reconstruct a three-dimensional magnetic distribution from given phase maps via the '''Reconstruct a three-dimensional magnetic distribution from given phase maps via the
conjugate gradient optimizaion method :func:`~.scipy.sparse.linalg.cg`. conjugate gradient optimizaion method :func:`~.scipy.sparse.linalg.cg`.
...@@ -93,19 +93,9 @@ def optimize_linear(data, regularisator=None, maxiter=1000, verbosity=0): ...@@ -93,19 +93,9 @@ def optimize_linear(data, regularisator=None, maxiter=1000, verbosity=0):
:class:`~.DataSet` object containing all phase maps in :class:`~.PhaseMap` objects and all :class:`~.DataSet` object containing all phase maps in :class:`~.PhaseMap` objects and all
projection directions in :class:`~.Projector` objects. These provide the essential projection directions in :class:`~.Projector` objects. These provide the essential
information for the reconstruction. information for the reconstruction.
Se_inv : :class:`~numpy.ndarray` (N=2), optional
Inverted covariance matrix of the measurement errors. The matrix has size `NxN` with N
being the length of the targetvector y (vectorized phase map information). Defaults to
an appropriate unity matrix if none is provided.
regularisator : :class:`~.Regularisator`, optional regularisator : :class:`~.Regularisator`, optional
Regularisator class that's responsible for the regularisation term. Defaults to zero Regularisator class that's responsible for the regularisation term. Defaults to zero
order Tikhonov if none is provided. order Tikhonov if none is provided.
maxiter : int
Maximum number of iterations.
verbosity : {0, 1, 2}, optional
Parameter defining the verposity of the output. `2` will show the current number of the
iteration and the cost of the current distribution. `1` will just show the iteration
number and `0` is the default and will prevent output all together.
Returns Returns
------- -------
...@@ -113,13 +103,13 @@ def optimize_linear(data, regularisator=None, maxiter=1000, verbosity=0): ...@@ -113,13 +103,13 @@ def optimize_linear(data, regularisator=None, maxiter=1000, verbosity=0):
The reconstructed magnetic distribution as a :class:`~.MagData` object. The reconstructed magnetic distribution as a :class:`~.MagData` object.
''' '''
import jutil import jutil.cg as jcg
LOG.debug('Calling optimize_sparse_cg') LOG.debug('Calling optimize_sparse_cg')
# Set up necessary objects: # Set up necessary objects:
cost = Costfunction(data, regularisator) cost = Costfunction(data, regularisator)
print cost(np.zeros(cost.n)) LOG.info('Cost before optimization: {}'.format(cost(np.zeros(cost.n))))
x_opt = jutil.cg.conj_grad_minimize(cost, max_iter=20) x_opt = jcg.conj_grad_minimize(cost, max_iter=max_iter)
print cost(x_opt) LOG.info('Cost after optimization: {}'.format(cost(x_opt)))
# Create and return fitting MagData object: # Create and return fitting MagData object:
mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) mag_opt = MagData(data.a, np.zeros((3,)+data.dim))
mag_opt.set_vector(x_opt, data.mask) mag_opt.set_vector(x_opt, data.mask)
...@@ -136,10 +126,11 @@ def optimize_nonlin(data, first_guess=None, regularisator=None): ...@@ -136,10 +126,11 @@ def optimize_nonlin(data, first_guess=None, regularisator=None):
:class:`~.DataSet` object containing all phase maps in :class:`~.PhaseMap` objects and all :class:`~.DataSet` object containing all phase maps in :class:`~.PhaseMap` objects and all
projection directions in :class:`~.Projector` objects. These provide the essential projection directions in :class:`~.Projector` objects. These provide the essential
information for the reconstruction. information for the reconstruction.
verbosity : {2, 1, 0}, optional first_fuess : :class:`~pyramid.magdata.MagData`
Parameter defining the verposity of the output. `2` is the default and will show the magnetization to start the non-linear iteration with.
current number of the iteration and the cost of the current distribution. `2` will just regularisator : :class:`~.Regularisator`, optional
show the iteration number and `0` will prevent output all together. Regularisator class that's responsible for the regularisation term. Defaults to zero
order Tikhonov if none is provided.
Returns Returns
------- -------
...@@ -147,44 +138,90 @@ def optimize_nonlin(data, first_guess=None, regularisator=None): ...@@ -147,44 +138,90 @@ def optimize_nonlin(data, first_guess=None, regularisator=None):
The reconstructed magnetic distribution as a :class:`~.MagData` object. The reconstructed magnetic distribution as a :class:`~.MagData` object.
''' '''
import jutil import jutil.minimizer as jmin
import jutil.norms as jnorms
LOG.debug('Calling optimize_cg') LOG.debug('Calling optimize_cg')
if first_guess is None: if first_guess is None:
first_guess = MagData(data.a, np.zeros((3,)+data.dim)) first_guess = MagData(data.a, np.zeros((3,)+data.dim))
x_0 = first_guess.get_vector(data.mask) x_0 = first_guess.get_vector(data.mask)
cost = Costfunction(data, regularisator) cost = Costfunction(data, regularisator)
assert len(x_0) == cost.n, (len(x_0), cost.m, cost.n)
# proj = fwd_model.data_set.projectors[0] p = regularisator.p
# proj_jac1 = np.array([proj.jac_dot(np.eye(proj.m, 1, -i).squeeze()) for i in range(proj.m)]) q = 1. / (1. - (1. / p))
# proj_jac2 = np.array([proj.jac_T_dot(np.eye(proj.n, 1, -i).squeeze()) for i in range(proj.n)]) lp = regularisator.norm
# print jac1, jac2.T, abs(jac1-jac2.T).sum() lq = jnorms.LPPow(q, 1e-20)
# print jac1.shape, jac2.shape def preconditioner(_, direc):
direc_p = direc / direc.max()
direc_p = 10 * (1. / q) * lq.jac(direc_p)
return direc_p
# This Method is semi-best for L1 type problems. Takes forever, though
LOG.info('Cost before optimization: {}'.format(cost(np.zeros(cost.n))))
result = jmin.minimize(
cost, x_0,
method="SteepestDescent",
options={"preconditioner": preconditioner},
tol={"max_iteration": 10000})
x_opt = result.x
LOG.info('Cost after optimization: {}'.format(cost(x_opt)))
mag_opt = MagData(data.a, np.zeros((3,)+data.dim))
mag_opt.set_vector(x_opt, data.mask)
return mag_opt
# pm = fwd_model.phase_mappers[proj.dim_uv]
# pm_jac1 = np.array([pm.jac_dot(np.eye(pm.m)[:, i]) for i in range(pm.m)])
# pm_jac2 = np.array([pm.jac_T_dot(np.eye(pm.n)[:, i]) for i in range(pm.n)])
# print jac1, jac2.T, abs(jac1-jac2.T).sum()
# print jac1.shape, jac2.shape
def optimize_splitbregman(data, weight, lam, mu):
'''Reconstruct a three-dimensional magnetic distribution from given phase maps via the
conjugate gradient optimizaion method :func:`~.scipy.sparse.linalg.cg`.
# jac1 = np.array([fwd_model.jac_dot(x_0, np.eye(fwd_model.m)[:, i]) for i in range(fwd_model.m)]) Parameters
# jac2 = np.array([fwd_model.jac_T_dot(x_0, np.eye(fwd_model.n)[:, i]) for i in range(fwd_model.n)]) ----------
# print proj_jac1.dot(pm_jac1) data : :class:`~.DataSet`
# print (pm_jac2.dot(proj_jac2)).T :class:`~.DataSet` object containing all phase maps in :class:`~.PhaseMap` objects and all
# print jac1 projection directions in :class:`~.Projector` objects. These provide the essential
# print jac2.T information for the reconstruction.
# print abs(jac1-jac2.T).sum() first_fuess : :class:`~pyramid.magdata.MagData`
# print jac1.shape, jac2.shape magnetization to start the non-linear iteration with.
regularisator : :class:`~.Regularisator`, optional
Regularisator class that's responsible for the regularisation term. Defaults to zero
order Tikhonov if none is provided.
assert len(x_0) == cost.n, (len(x_0), cost.m, cost.n) Returns
result = jutil.minimizer.minimize(cost, x_0, options={"conv_rel":1e-2}, tol={"max_iteration":4}) -------
x_opt = result.x mag_data : :class:`~pyramid.magdata.MagData`
The reconstructed magnetic distribution as a :class:`~.MagData` object.
'''
import jutil.splitbregman as jsb
import jutil.operator as joperator
import jutil.diff as jdiff
from pyramid.regularisator import FirstOrderRegularisator
LOG.debug('Calling optimize_splitbregman')
regularisator = FirstOrderRegularisator(data.mask, lam, 1)
x_0 = MagData(data.a, np.zeros((3,)+data.dim)).get_vector(data.mask)
cost = Costfunction(data, regularisator)
print cost(x_0)
fwd_mod = cost.fwd_model
A = joperator.Function(
(cost.m, cost.n),
lambda x: fwd_mod.jac_dot(None, x),
FT=lambda x: fwd_mod.jac_T_dot(None, x))
D0 = jdiff.get_diff_operator(data.mask, 0, 3)
D1 = jdiff.get_diff_operator(data.mask, 1, 3)
D = joperator.VStack([D0, D1])
y = np.asarray(cost.y, dtype=np.double)
x_opt = jsb.split_bregman_2d(
A, D, y,
weight=1000, mu=10, lambd=1e-6, max_iter=100)
print cost(x_opt) print cost(x_opt)
mag_opt = MagData(data.a, np.zeros((3,)+data.dim)) mag_opt = MagData(data.a, np.zeros((3,)+data.dim))
mag_opt.set_vector(x_opt, data.mask) mag_opt.set_vector(x_opt, data.mask)
return mag_opt return mag_opt
def optimize_simple_leastsq(phase_map, mask, b_0=1, lam=1E-4, order=0): def optimize_simple_leastsq(phase_map, mask, b_0=1, lam=1E-4, order=0):
'''Reconstruct a magnetic distribution for a 2-D problem with known pixel locations. '''Reconstruct a magnetic distribution for a 2-D problem with known pixel locations.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment