Newer
Older
# Copyright 2014 by Forschungszentrum Juelich GmbH
# Author: J. Caron
#
"""This module provides the :class:`~.DataSet` class for the collection of phase maps
and additional data like corresponding projectors."""
import logging
from numbers import Number
from pyramid.kernel import Kernel
from pyramid.phasemap import PhaseMap
from pyramid.phasemapper import PhaseMapperRDFC
from pyramid.projector import Projector
from pyramid.fielddata import ScalarData
from scipy import sparse
"""Class for collecting phase maps and corresponding projectors.
Represents a collection of (e.g. experimentally derived) phase maps, stored as
:class:`~.PhaseMap` objects and corresponding projectors stored as :class:`~.Projector`
objects. At creation, the grid spacing `a` and the dimension `dim` of the magnetization
distribution have to be given. Data can be added via the :func:`~.append` method, where
a :class:`~.PhaseMap`, a :class:`~.Projector` and additional info have to be given.
Attributes
----------
a: float
The grid spacing in nm.
dim: tuple (N=3)
Dimensions of the 3D magnetization distribution.
b_0: double
The saturation induction in `T`.
mask: :class:`~numpy.ndarray` (N=3), optional
A boolean mask which defines the magnetized volume in 3D.
Se_inv : :class:`~numpy.ndarray` (N=2), optional
Inverted covariance matrix of the measurement errors. The matrix has size `NxN` with N
being the length of the targetvector y (vectorized phase map information).
projectors: list of :class:`~.Projector`
A list of all stored :class:`~.Projector` objects.
phasemaps: list of :class:`~.PhaseMap`
A list of all stored :class:`~.PhaseMap` objects.
phase_vec: :class:`~numpy.ndarray` (N=1)
The concatenaded, vectorized phase of all :class:`~.PhaseMap` objects.
count(self): int
Number of phase maps and projectors in the dataset.
hook_points(self): :class:`~numpy.ndarray` (N=1)
Hook points which determine the start of values of a phase map in the `phase_vec`.
The length is `count + 1`.
_log = logging.getLogger(__name__ + '.DataSet')
return self._a
@a.setter
def a(self, a):
assert isinstance(a, Number), 'Grid spacing has to be a number!'
assert a >= 0, 'Grid spacing has to be a positive number!'
self._a = float(a)
@property
def mask(self):
"""A boolean mask which defines the magnetized volume in 3D."""
return self._mask
@mask.setter
def mask(self, mask):
if mask is not None:
assert mask.shape == self.dim, 'Mask dimensions must match!'
else:
mask = np.ones(self.dim, dtype=bool)
self._mask = mask.astype(np.bool)

Jan Caron
committed
return np.sum([len(p.phase_vec) for p in self.phasemaps])
@property
def count(self):
"""Number of phase maps and projectors in the dataset."""
return len(self.projectors)
"""The concatenaded, vectorized phase of all ;class:`~.PhaseMap` objects."""

Jan Caron
committed
return np.concatenate([p.phase_vec for p in self.phasemaps])
"""Hook points which determine the start of values of a phase map in the `phase_vec`."""

Jan Caron
committed
for i, phasemap in enumerate(self.phasemaps):
result.append(result[i] + np.prod(phasemap.dim_uv))
@property
def phasemaps(self):
"""List of all PhaseMaps in the DataSet."""
return self._phasemaps
@property
def projectors(self):
"""List of all Projectors in the DataSet."""
return self._projectors

Jan Caron
committed
def phasemappers(self):
"""List of all PhaseMappers in the DataSet."""
return self._phasemappers
@property
def phasemapper_dict(self):
"""Dictionary of all PhaseMappers in the DataSet."""
return self._phasemapper_dict
def __init__(self, a, dim, b_0=1, mask=None, Se_inv=None):
dim = tuple(dim)
assert isinstance(dim, tuple) and len(dim) == 3, \
'Dimension has to be a tuple of length 3!'
self.a = a
self.dim = dim
self.b_0 = b_0
self.Se_inv = Se_inv
self._phasemaps = []
self._projectors = []
self._phasemappers = []
self._phasemapper_dict = {}
self._log.debug('Created: ' + str(self))
return '%s(a=%r, dim=%r, b_0=%r, mask=%r, Se_inv=%r)' % (self.__class__, self.a, self.dim,
self.b_0, self.mask, self.Se_inv)
return 'DataSet(a=%s, dim=%s, b_0=%s)' % (self.a, self.dim, self.b_0)
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
def _append_single(self, phasemap, projector, phasemapper=None):
self._log.debug('Calling _append')
assert isinstance(phasemap, PhaseMap) and isinstance(projector, Projector), \
'Argument has to be a tuple of a PhaseMap and a Projector object!'
dim_uv = projector.dim_uv
assert projector.dim == self.dim, '3D dimensions must match!'
assert phasemap.dim_uv == dim_uv, 'Projection dimensions (dim_uv) must match!'
assert phasemap.a == self.a, 'Grid spacing must match!'
# Create lookup key:
if phasemapper is not None:
key = dim_uv # Create standard phasemapper, dim_uv is enough for identification!
else:
key = (dim_uv, str(phasemapper)) # Include string representation for identification!
# Retrieve existing, use given or create new phasemapper:
if key in self.phasemapper_dict: # Retrieve existing phasemapper:
phasemapper = self.phasemapper_dict[key]
elif phasemapper is not None: # Use given one (do nothing):
pass
else: # Create new standard (RDFC) phasemapper:
phasemapper = PhaseMapperRDFC(Kernel(self.a, dim_uv, self.b_0))
self._phasemapper_dict[key] = phasemapper
# Append everything to the lists (just contain pointers to objects!):
self._phasemaps.append(phasemap)
self._projectors.append(projector)
self._phasemappers.append(phasemapper)
def append(self, phasemap, projector, phasemapper=None):
"""Appends a data pair of phase map and projection infos to the data collection.`

Jan Caron
committed
phasemap: :class:`~.PhaseMap`
A :class:`~.PhaseMap` object which should be added to the data collection.
projector: :class:`~.Projector`
A :class:`~.Projector` object which should be added to the data collection.
phasemapper: :class:`~.PhaseMapper`, optional
An optional :class:`~.PhaseMapper` object which should be added.
if type(phasemap) is not list:
phasemap = [phasemap]
if type(projector) is not list:
projector = [projector]
if type(phasemapper) is not list:
phasemapper = [phasemapper] * len(phasemap)
assert len(phasemap) == len(projector),\
('Phasemaps and projectors must have same' +
'length(phasemaps: {}, projectors: {})!'.format(len(phasemap), len(projector)))
for i in range(len(phasemap)):
self._append_single(phasemap[i], projector[i], phasemapper[i])
# Reset the Se_inv matrix from phasemaps confidence matrices:
self.set_Se_inv_diag_with_conf()
def create_phasemaps(self, magdata, difference=True, ramp=None):
"""Create a list of phasemaps with the projectors in the dataset for a given

Jan Caron
committed
:class:`~.VectorData` object.

Jan Caron
committed
magdata : :class:`~.VectorData`
Magnetic distribution to which the projectors of the dataset should be applied.
Returns
-------

Jan Caron
committed
phasemaps : list of :class:`~.phasemap.PhaseMap`
A list of the phase maps resulting from the projections specified in the dataset.

Jan Caron
committed
self._log.debug('Calling create_phasemaps')
phasemaps = []
for i, projector in enumerate(self.projectors):

Jan Caron
committed
mag_proj = projector(magdata)
phasemap = self.phasemappers[i](mag_proj)
if difference:
phasemap -= self.phasemaps[i]
if ramp is not None:
assert type(ramp) == Ramp, 'correct_ramp has to be a Ramp object!'
phasemap += ramp(index=i)

Jan Caron
committed
phasemap.mask = mag_proj.get_mask()[0, ...]
phasemaps.append(phasemap)
return phasemaps
def set_Se_inv_block_diag(self, cov_list):
"""Set the Se_inv matrix as a block diagonal matrix
Parameters
----------
cov_list: list of :class:`~numpy.ndarray`
List of inverted covariance matrices (one for each projection).
Returns
-------
None
self._log.debug('Calling set_Se_inv_block_diag')

Jan Caron
committed
assert len(cov_list) == len(self.phasemaps), 'Needs one covariance matrix per phase map!'
self.Se_inv = sparse.block_diag(cov_list).tocsr()
def set_Se_inv_diag_with_conf(self, conf_list=None):
"""Set the Se_inv matrix as a block diagonal matrix from a list of confidence matrizes.
Parameters
----------
conf_list: list of :class:`~numpy.ndarray` (optional)
List of 2D confidence matrizes (one for each projection) which define trust regions.
If not given this uses the confidence matrizes of the phase maps.
Returns
-------
None
self._log.debug('Calling set_Se_inv_diag_with_conf')
if conf_list is None: # if no confidence matrizes are given, extract from the phase maps!

Jan Caron
committed
conf_list = [phasemap.confidence for phasemap in self.phasemaps]
cov_list = [sparse.diags(c.ravel().astype(np.float32), 0) for c in conf_list]
self.set_Se_inv_block_diag(cov_list)
def set_3d_mask(self, mask_list=None, threshold=0.9):
"""Set the 3D mask from a list of 2D masks.
Parameters
----------
mask_list: list of :class:`~numpy.ndarray` (optional)
List of 2D masks, which represent the projections of the 3D mask. If not given this
uses the mask matrizes of the phase maps. If just one phase map is present, the
according mask is simply expanded to 3D and used directly.
threshold: float, optional
The threshold, describing the minimal number of 2D masks which have to extrude to the
point in 3D to be considered valid as containing magnetisation. `threshold` is a
relative number in the range of [0, 1]. The default is 0.9. Choosing a value of 1 is
the strictest possible setting (every 2D mask has to contain a 3D point to be valid).
self._log.debug('Calling set_3d_mask')
if mask_list is None: # if no masks are given, extract from phase maps:

Jan Caron
committed
mask_list = [phasemap.mask for phasemap in self.phasemaps]
if len(mask_list) == 1: # just one phasemap --> 3D mask equals 2D mask
self.mask = np.expand_dims(mask_list[0], axis=0) # z-dim is set to 1!
else: # 3D mask has to be constructed from 2D masks:
mask_3d = np.zeros(self.dim)
for i, projector in enumerate(self.projectors):
mask_2d = self.phasemaps[i].mask.reshape(-1) # 2D mask
# Add extrusion of 2D mask:
mask_3d += projector.weight.T.dot(mask_2d).reshape(self.dim)
self.mask = np.where(mask_3d >= threshold * self.count, True, False)
def save(self, filename, overwrite=True):
"""Saves the dataset as a collection of HDF5 files.
Parameters
----------
filename: str
Base name of the files which the dataset is saved into. HDF5 files are supported.
overwrite: bool, optional
If True (default), an existing file will be overwritten, if False, this
(silently!) does nothing.
"""
from .file_io.io_dataset import save_dataset
save_dataset(self, filename, overwrite)
def plot_mask(self, **kwargs):
"""If it exists, display the 3D mask of the magnetization distribution.
Returns
-------
None
self._log.debug('Calling plot_mask')
if self.mask is not None:
return ScalarData(self.a, self.mask).plot_mask(**kwargs)
def plot_phasemaps(self, magdata=None, title='Phase Map', difference=False, ramp=None,
**kwargs):
"""Display all phasemaps saved in the :class:`~.DataSet` as a colormesh.

Jan Caron
committed
magdata : :class:`~.VectorData`, optional
Magnetic distribution to which the projectors of the dataset should be applied. If not

Jan Caron
committed
given, the phasemaps in the dataset are used.
title : string, optional
The main part of the title of the plots. The default is 'Phase Map'. Additional
projector info is appended to this.
Returns
-------
None
self._log.debug('Calling plot_phasemaps')

Jan Caron
committed
if magdata is not None:
phasemaps = self.create_phasemaps(magdata, difference=difference, ramp=ramp)

Jan Caron
committed
phasemaps = self.phasemaps
[phasemap.plot_phase('{} ({})'.format(title, self.projectors[i].get_info()), **kwargs)

Jan Caron
committed
for (i, phasemap) in enumerate(phasemaps)]
def plot_phasemaps_combined(self, magdata=None, title='Combined Plot', difference=False,
ramp=None, **kwargs):
"""Display all phasemaps and the resulting color coded holography images.

Jan Caron
committed
magdata : :class:`~.VectorData`, optional
Magnetic distribution to which the projectors of the dataset should be applied. If not

Jan Caron
committed
given, the phasemaps in the dataset are used.
title : string, optional
The title of the plot. The default is 'Combined Plot'.
cmap : string, optional
The :class:`~matplotlib.colors.Colormap` which is used for the plot as a string.
The default is 'RdBu'.
Returns
-------
None
self._log.debug('Calling plot_phasemaps_combined')

Jan Caron
committed
if magdata is not None:
phasemaps = self.create_phasemaps(magdata, difference=difference, ramp=ramp)

Jan Caron
committed
phasemaps = self.phasemaps
for (i, phasemap) in enumerate(phasemaps):
phasemap.plot_combined('{} ({})'.format(title, self.projectors[i].get_info()),